The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1 +/- cos phi dependence on the phase difference phi of the superconductors from which the excitations originated (with the +/- sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.