ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

396   0   0.0 ( 0 )
 نشر من قبل Arik Mitschang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. W. Mitschang




اسأل ChatGPT حول البحث

The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work we perform the first ever blind chemical tagging experiment, i.e., tagging stars with no known or otherwise discernable associations, on a sample of 714 disc field stars with a number of high quality high resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thought. Our results point to several important conclusions, among them that group finding will be limited strictly to chemical abundance space, e.g. stellar ages, kinematics, colors, temperature and surface gravity do not enhance the detectability of groups. We also demonstrate that in addition to its role in probing the chemical enrichment and kinematic history of the Galactic disc, chemical tagging represents a powerful new stellar age determination technique.



قيم البحث

اقرأ أيضاً

We have obtained high-resolution, high signal-to-noise spectra for 899 F and G dwarf stars in the Solar neighbourhood. The stars were selected on the basis of their kinematic properties to trace the thin and thick discs, the Hercules stream, and the metal-rich stellar halo. A significant number of stars with kinematic properties in between the thin and thick discs were also observed in order to in greater detail investigate the dichotomy of the Galactic disc. All stars have been homogeneously analysed, using the exact same methods, atomic data, model atmospheres, etc., and also truly differentially to the Sun. Hence, the sample is likely to be free from internal errors, allowing us to, in a multi-dimensional space consisting of detailed elemental abundances, stellar ages, and the full three-dimensional space velocities, reveal very small differences between the stellar populations.
The last decade has seen apparent dramatic progress in large spectroscopic datasets aimed at the study of the Galactic bulge. We consider remaining problems that appear to be intractable with the existing data, including important issues such as whet her the bulge and thick disk actually show distinct chemistry, and apparent dramatic changes in morphology at Solar metallicity, as well as large scale study of the heavy elements (including r-process) in the bulge. Although infrared spectroscopy is powerful, the lack of heavy element atomic transitions in the infrared renders impossible any survey of heavy elements from such data. We argue that uniform, high S/N, high resolution data in the optical offer an outstanding opportunity to resolve these problems and explore other populations in the bulge, such as RR Lyrae and hot HB stars.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc an d the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
117 - T. Bensby 2009
The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurat ely trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars. [ABRIDGED] We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. [ABRIDGED] We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H]=-0.72 to +0.54, and an average metallicity of <[Fe/H]>=-0.08+/-0.47, close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H]<0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.
Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. To quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. We develop a new 2D galactic disc chemical evolution model, capable of following not just radial but also azimuthal inhomogeneities. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, in agreement with the most recent observations in external galaxies, the azimuthal variations are more evident in the outer galactic regions. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure corotation resonance, where the relative speed between spiral and gaseous disc is the slowest. In conclusion we provided a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا