ترغب بنشر مسار تعليمي؟ اضغط هنا

Translationally invariant multipartite Bell inequalities involving only two-body correlators

352   0   0.0 ( 0 )
 نشر من قبل Remigiusz Augusiak
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three and four-partite Bell inequalities constructed from one and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality.



قيم البحث

اقرأ أيضاً

A method for construction of the multipartite Clauser-Horne-Shimony-Holt (CHSH) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. A unified frame work to establish all kinds of CHSH-type Bell inequalities by increasing step by step the number of observers is given. As an application, compact Bell inequalities, for eight observers, involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus is experimentally friendly in multi-photon experiments.
69 - Qi Zhao , You Zhou 2020
Bell inequality with self-testing property has played an important role in quantum information field with both fundamental and practical applications. However, it is generally challenging to find Bell inequalities with self-testing property for multi partite states and actually there are not many known candidates. In this work, we propose a systematical framework to construct Bell inequalities from stabilizers which are maximally violated by general stabilizer states, with two observables for each local party. We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent, if and only if these stabilizers can uniquely determine the state in a device-dependent manner. This bridges the gap between device-independent and device-dependent verification methods. Our framework can provide plenty of Bell inequalities for self-testing stabilizer states. Among them, we give two families of Bell inequalities with different advantages: (1) a family of Bell inequalities with a constant ratio of quantum and classical bounds using 2N correlations, (2) Single pair inequalities improving on all previous robustness self-testing bounds using N+1 correlations, which are both efficient and suitable for realizations in multipartite systems. Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
178 - Yanmin Yang , Zhu-Jun Zheng 2017
In recent papers, the theory of representations of finite groups has been proposed to analyzing the violation of Bell inequalities. In this paper, we apply this method to more complicated cases. For two partite system, Alice and Bob each make one of $d$ possible measurements, each measurement has $n$ outcomes. The Bell inequalities based on the choice of two orbits are derived. The classical bound is only dependent on the number of measurements $d$, but the quantum bound is dependent both on $n$ and $d$. Even so, when $d$ is large enough, the quantum bound is only dependent on $d$. The subset of probabilities for four parties based on the choice of six orbits under group action is derived and its violation is described. Restricting the six orbits to three parties by forgetting the last party, and guaranteeing the classical bound invariant, the Bell inequality based on the choice of four orbits is derived. Moreover, all the corresponding nonlocal games are analyzed.
D{u}r [Phys. Rev. Lett. {bf 87}, 230402 (2001)] constructed $N$-qubit bound entangled states which violate a Bell inequality for $Nge 8$, and his result was recently improved by showing that there exists an $N$-qubit bound entangled state violating t he Bell inequality if and only if $Nge 6$ [Phys. Rev. A {bf 79}, 032309 (2009)]. On the other hand, it has been also shown that the states which D{u}r considered violate Bell inequalities different from the inequality for $Nge 6$. In this paper, by employing different forms of Bell inequalities, in particular, a specific form of Bell inequalities with $M$ settings of the measuring apparatus for sufficiently large $M$, we prove that there exists an $N$-qubit bound entangled state violating the $M$-setting Bell inequality if and only if $Nge 4$.
We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Be ll-type inequality for graph states, where the criterion for violation is a sufficiently high fidelity. Second we analyze GHZ states of up to 14 ions generated in a previous experiment using stronger Mermin-Klyshko inequalities, and show that in this case the violation of local realism increases exponentially with system size. These experiments represent a violation of multipartite Bell-type inequalities of deterministically prepared entangled states. In addition, the detection loophole is closed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا