ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent, Extreme Multi-Zone Model for Simulating Flux and Polarization Variability in Blazars

101   0   0.0 ( 0 )
 نشر من قبل Alan Marscher
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alan P. Marscher




اسأل ChatGPT حول البحث

The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to gamma(max) > 1E4 times their rest-mass energy, with the value of gamma(max) determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in gamma-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its time-scale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.



قيم البحث

اقرأ أيضاً

217 - A. P. Marscher 2013
The author is developing a numerical code with thousands of emission zones to simulate the time-dependent multi-waveband emission from blazars. The code is based on a model in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical collimation shock that accelerates electrons to maximum energies in the 5-100 GeV range. This paper reports early results produced by the model. The simulated light curves and time profiles of the degree and position angle of polarization have a number of features in common with the observational data of blazars. Maps of the polarized intensity structure can be compared with those of blazars observed with very long baseline interferometry at short millimeter wavelengths.
We report the results of optical monitoring for a sample of 11 blazars including 10 BL Lacs and 1 Flat Spectrum Radio Quasar (FSRQ). We have measured the multiband optical flux and colour variations in these blazars on intra-day and short-term timesc ales of months and have limited data for 2 more blazars. These photometric observations were made during 2009 to 2011, using six optical telescopes, four in Bulgaria, one in Greece and one in India. On short-term timescales we found significant flux variations in 9 of the sources and colour variations in 3 of them. Intra-day variability was detected on 6 nights for 2 sources out of the 18 nights and 4 sources for which we collected such data. These new optical observations of these blazars plus data from our previous published papers (for 3 more blazars) were used to analyze their spectral flux distributions in the optical frequency range. Our full sample for this purpose includes 6 high-synchrotron-frequency-peaked BL Lacs (HSPs), 3 intermediate-synchrotron-frequency-peaked BL Lacs (ISPs) and 6 low-synchrotron-frequency-peaked BL Lacs (LSPs; including both BL Lacs and FSRQs). We also investigated the spectral slope variability and found that the average spectral slopes of LSPs show a good accordance with the Synchrotron Self-Compton (SSC) loss dominated model. Our analysis supports previous studies that found that the spectra of the HSPs and FSRQs have significant additional emission components. The spectra of all these HSPs and LSPs get flatter when they become brighter, while for FSRQs the opposite appears to hold. This supports the hypothesis that there is a significant thermal contribution to the optical spectrum for FSRQs.
We present the results of optical photometric observations of three extreme TeV blazars, 1ES 0229$+$200, 1ES 0414$+$009, and 1ES 2344$+$514, taken with two telescopes (1.3 m Devasthal Fast Optical Telescope, and 1.04 m Sampuranand Telescope) in India and two (1.4 m Milankovi{c} telescope and 60 cm Nedeljkovi{c} telescope) in Serbia during 2013--2019. We investigated their flux and spectral variability on diverse timescales. We examined a total of 36 intraday $R-$band light curves of these blazars for flux variations using the power-enhanced {it F}-test and the nested ANOVA test. No significant intraday variation was detected on 35 nights, and during the one positive detection the amplitude of variability was only 2.26 per cent. On yearly timescales, all three blazars showed clear flux variations in all optical wavebands. The weighted mean optical spectral index ($alpha_{BR}$), calculated using $B - R$ color indices, for 1ES 0229$+$200 was 2.09 $pm$ 0.01. We also estimated the weighted mean optical spectral indices of 0.67 $pm$ 0.01 and 1.37 $pm$ 0.01 for 1ES 0414$+$009, and 1ES 2344$+$514, respectively, by fitting a single power-law ($F_{ u} propto u^{-alpha}$) in their optical ({it VRI}) spectral energy distributions. A bluer-when-brighter trend was only detected in the blazar 1ES 0414$+$009. We briefly discuss different possible physical mechanisms responsible for the observed flux and spectral changes in these blazars on diverse timescales.
Time-variable polarization is an extremely valuable observational tool to probe the dynamical physical conditions of blazar jets. Since 2008, we have been monitoring the flux and linear polarization of a sample of gamma-ray bright blazars at optical frequencies. Some of the observations were performed on nightly or intra-night time-scales in four optical bands, providing information on the frequency and time dependence of the polarization. The observed behavior is similar to that found in simulations of turbulent plasma in a relativistic jet that contains a standing shock and/or a helical background magnetic field. Similar simulations predict the characteristics of X-ray synchrotron polarization of blazars that will be measured in the future by the Imaging X-ray Polarimetry Explorer (IXPE).
We present the results of photometric (V band) and polarimetric observations of the blazar BL Lac during 2008--2010 using TRISPEC attached to the KANATA 1.5-m telescope in Japan. The data reveal a great deal of variability ranging from days to months with detection of strong variations in fractional polarization. The V band flux strongly anti-correlates with the degree of polarization during the first of two observing seasons but not during the second. The direction of the electric vector, however, remained roughly constant during all our observations. These results are consistent with a model with at least two emission regions being present, with the more variable component having a polarization direction nearly perpendicular to that of the relatively quiescent region so that a rising flux can produce a decline in degree of polarization. We also computed models involving helical jet structures and single transverse shocks in jets and show that they might also be able to agree with the anti-correlations between flux and fractional polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا