ﻻ يوجد ملخص باللغة العربية
We prove a local central limit theorem (LCLT) for the number of points $N(J)$ in a region $J$ in $mathbb R^d$ specified by a determinantal point process with an Hermitian kernel. The only assumption is that the variance of $N(J)$ tends to infinity as $|J| to infty$. This extends a previous result giving a weaker central limit theorem (CLT) for these systems. Our result relies on the fact that the Lee-Yang zeros of the generating function for ${E(k;J)}$ --- the probabilities of there being exactly $k$ points in $J$ --- all lie on the negative real $z$-axis. In particular, the result applies to the scaled bulk eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the Ginibre ensemble. For the GUE we can also treat the properly scaled edge eigenvalue distribution. Using identities between gap probabilities, the LCLT can be extended to bulk eigenvalues of the Gaussian Symplectic Ensemble (GSE). A LCLT is also established for the probability density function of the $k$-th largest eigenvalue at the soft edge, and of the spacing between $k$-th neigbors in the bulk.
We study the many body quantum evolution of bosonic systems in the mean field limit. The dynamics is known to be well approximated by the Hartree equation. So far, the available results have the form of a law of large numbers. In this paper we go one
We continue the study of joint statistics of eigenvectors and eigenvalues initiated in the seminal papers of Chalker and Mehlig. The principal object of our investigation is the expectation of the matrix of overlaps between the left and the right eig
We show that the central limit theorem for linear statistics over determinantal point processes with $J$-Hermitian kernels holds under fairly general conditions. In particular, We establish Gaussian limit for linear statistics over determinantal poin
In these proceedings we summarise how the determinantal structure for the conditional overlaps among left and right eigenvectors emerges in the complex Ginibre ensemble at finite matrix size. An emphasis is put on the underlying structure of orthogon
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution $q$ over the subsets of a