ﻻ يوجد ملخص باللغة العربية
We consider a universal relation between moment of inertia and quadrupole moment of arbitrarily fast rotating neutron stars. Recent studies suggest that this relation breaks down for fast rotation. We find that it is still universal among various suggested equations of state for constant values of certain dimensionless parameters characterizing the magnitude of rotation. One of these parameters includes the neutron star radius, leading to a new universal relation expressing the radius through the mass, frequency, and spin parameter. This can become a powerful tool for radius measurements.
We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar cor
In the last few decades, lots of universal relations between different global physical quantities of neutron stars have been proposed to constrain the unobservable or hard to be observed properties of neutron stars. But few of them are related to the
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these e