ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated data reduction workflows for astronomy

116   0   0.0 ( 0 )
 نشر من قبل Wolfram Freudling
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. The efficiency of data reduction can be improved by using automatic workflows to organise data and execute the sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.



قيم البحث

اقرأ أيضاً

A fully autonomous data reduction pipeline has been developed for FRODOSpec, an optical fibre-fed integral field spectrograph currently in use at the Liverpool Telescope. This paper details the process required for the reduction of data taken using a n integral field spectrograph and presents an overview of the computational methods implemented to create the pipeline. Analysis of errors and possible future enhancements are also discussed.
Here we present CaosDB, a Research Data Management System (RDMS) designed to ensure seamless integration of inhomogeneous data sources and repositories of legacy data. Its primary purpose is the management of data from biomedical sciences, both from simulations and experiments during the complete research data lifecycle. An RDMS for this domain faces particular challenges: Research data arise in huge amounts, from a wide variety of sources, and traverse a highly branched path of further processing. To be accepted by its users, an RDMS must be built around workflows of the scientists and practices and thus support changes in workflow and data structure. Nevertheless it should encourage and support the development and observation of standards and furthermore facilitate the automation of data acquisition and processing with specialized software. The storage data model of an RDMS must reflect these complexities with appropriate semantics and ontologies while offering simple methods for finding, retrieving, and understanding relevant data. We show how CaosDB responds to these challenges and give an overview of the CaosDB Server, its data model and its easy-to-learn CaosDB Query Language. We briefly discuss the status of the implementation, how we currently use CaosDB, and how we plan to use and extend it.
77 - Alex Cheng , Jules White 2018
Outpatient clinics often run behind schedule due to patients who arrive late or appointments that run longer than expected. We sought to develop a generalizable method that would allow healthcare providers to diagnose problems in workflow that disrup t the schedule on any given provider clinic day. We use a constraint optimization problem to identify the least number of appointment modifications that make the rest of the schedule run on-time. We apply this method to an outpatient clinic at Vanderbilt. For patient seen in this clinic between March 27, 2017 and April 21, 2017, long cycle times tended to affect the overall schedule more than late patients. Results from this workflow diagnosis method could be used to inform interventions to help clinics run smoothly, thus decreasing patient wait times and increasing provider utilization.
The ever-growing availability of computing power and the sustained development of advanced computational methods have contributed much to recent scientific progress. These developments present new challenges driven by the sheer amount of calculations and data to manage. Next-generation exascale supercomputers will harden these challenges, such that automated and scalable solutions become crucial. In recent years, we have been developing AiiDA (http://www.aiida.net), a robust open-source high-throughput infrastructure addressing the challenges arising from the needs of automated workflow management and data provenance recording. Here, we introduce developments and capabilities required to reach sustained performance, with AiiDA supporting throughputs of tens of thousands processes/hour, while automatically preserving and storing the full data provenance in a relational database making it queryable and traversable, thus enabling high-performance data analytics. AiiDAs workflow language provides advanced automation, error handling features and a flexible plugin model to allow interfacing with any simulation software. The associated plugin registry enables seamless sharing of extensions, empowering a vibrant user community dedicated to making simulations more robust, user-friendly and reproducible.
We present in this paper the general formalism and data processing steps used in the MATISSE data reduction software, as it has been developed by the MATISSE consortium. The MATISSE instrument is the mid-infrared new generation interferometric instru ment of the Very Large Telescope Interferometer (VLTI). It is a 2-in-1 instrument with 2 cryostats and 2 detectors: one 2k x 2k Rockwell Hawaii 2RG detector for L&M-bands, and one 1k x 1k Raytheon Aquarius detector for N-band, both read at high framerates, up to 30 frames per second. MATISSE is undergoing its first tests in laboratory today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا