ﻻ يوجد ملخص باللغة العربية
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p-shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p-shell and beyond and we present options to remedy these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty quantification of all stages of the calculation.
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic e
We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences
We discuss the construction of a nuclear Energy Density Functional (EDF) from ab initio calculations, and we advocate the need of a methodical approach that is free from ad hoc assumptions. The equations of state (EoS) of symmetric nuclear and pure n
The extension of ab initio quantum many-body theory to higher accuracy and larger systems is intrinsically limited by the handling of large data objects in form of wave-function expansions and/or many-body operators. In this work we present matrix fa
We present the first application of a new approach, proposed in [Journal of Physics G: Nuclear and Particle Physics, 43, 04LT01 (2016)] to derive coupling constants of the Skyrme energy density functional (EDF) from ab initio Hamiltonian. By perturbi