ﻻ يوجد ملخص باللغة العربية
We report analysis of high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak, due to a massive planet with a mass ratio of q = 6.9 x 10^{-3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the MOA Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M_L = 0.66_{-0.33}^{+0.29} M_Sun orbited by a planet of mass m_P = 4.8_{-2.4}^{+2.1} M_Jup at an orbital separation of a = 4.1_{-1.5}^{+1.9} AU at a distance of D_L = 3.6 +/- 1.3 kpc. The faint source magnitude of I_S = 21.30 and relatively high lens-source relative proper motion of mu_rel = 7.6 +/- 1.6 mas/yr implies that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.
We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, wi
We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of $q=(3.8pm0.7)times10^{-4}$ and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitu
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlen
Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report th
We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparen