ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic ordering with reduced cerium moments in hole-doped CeOs2Al10

181   0   0.0 ( 0 )
 نشر من قبل Dmitry Khalyavin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lightly hole-doped system CeOs1.94Re0.06Al10 has been studied by muon spin relaxation and neutron diffraction measurements. A long-range antiferromagnetic ordering of the Ce-sublattice with substantially reduced value of the magnetic moment 0.18(1) mu_B has been found below T_N = 21 K. Similar to the undoped parent compound, the magnetic ground state of CeOs1.94Re0.06Al10 preserves the anomalous direction of the ordered moments along the c-axis. The obtained result reveals the crucial difference between electron- and hole-doping effects on the magnetic ordering in CeOs2Al10. The former suppresses the anisotropic c-f hybridization and promotes localized Ce moments. On the contrary, the latter increases the hybridization and shifts the system towards delocalized non-magnetic state.



قيم البحث

اقرأ أيضاً

We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs$_2$Al$_{10}$ across an anomalous antiferromagnetic ordering temperature ($T_0$) of 29 K, using optical conductivity spectra. The spectra along the $a$- and $c $-axes indicate that a $c$-$f$ hybridization gap emerges from a higher temperature continuously across $T_0$. Along the b-axis, on the other hand, a different energy gap with a peak at 20 meV appears below 39 K, which is higher temperature than $T_0$, because of structural distortion. The onset of the energy gap becomes visible below $T_0$. Our observation reveals that the electronic structure as well as the energy gap opening along the b-axis due to the structural distortion induces antiferromagnetic ordering below $T_0$.
We have studied the evolution of magnetic and orbital excitations as a function of hole-doping in single crystal samples of Sr2Ir(1-x)Rh(x)O4 (0.07 < x < 0.42) using high resolution Ir L3-edge resonant inelastic x-ray scattering (RIXS). Within the an tiferromagnetically ordered region of the phase diagram (x < 0.17) we observe highly dispersive magnon and spin-orbit exciton modes. Interestingly, both the magnon gap energy and the magnon bandwidth appear to increase as a function of doping, resulting in a hardening of the magnon mode with increasing hole doping. As a result, the observed spin dynamics of hole-doped iridates more closely resemble those of the electron-doped, rather than hole-doped, cuprates. Within the paramagnetic region of the phase diagram (0.17 < x < 0.42) the low-lying magnon mode disappears, and we find no evidence of spin fluctuations in this regime. In addition, we observe that the orbital excitations become essentially dispersionless in the paramagnetic phase, indicating that magnetic order plays a crucial role in the propagation of the spin-orbit exciton.
The magnetic ground state of the antiferromagnet Kondo lattice compound Ce8Pd24Ga has been investigated using neutron powder diffraction, inelastic neutron scattering and zero-field muon spin relaxation measurements. The neutron diffraction analysis, below TN (3.6(0.2)K), reveals a commensurate type-C antiferromagnetic structure with the ordered state magnetic moment of ~0.36 mB/Ce-atom along the cubic <111> direction. The analysis of the inelastic neutron scattering (INS) data based on the crystal field (CF) model reveals a doublet ground state with a ground state moment of 1.29 mB/Ce-atom. The observed magnetic moment from neutron diffraction, which is small compared to the expected value from CF-analysis, is attributed to screening of the local Ce moment by the Kondo effect. This is supported by the observed Kondo-type resistivity and a small change in the entropy of Ce8Pd24Ga at TN. The zero-field muon spin relaxation rate exhibits a sharp increase below TN indicating ordering of Ce moments, in agreement with the neutron diffraction data. The present studies reveal that the physical properties of Ce8Pd24Ga are governed by the onsite Kondo compensation, the moment stabilizing intersite RKKY interaction and the crystal field effect.
The ground-state magnetic structure of EuNi$_{2}$As$_{2}$ was investigated by single-crystal neutron diffraction. At base temperature, the Eu$^{2+}$ moments are found to form an incommensurate antiferromagnetic spiral-like structure with a magnetic p ropagation vector of $mathit{k}$ = (0, 0, 0.92). They align ferromagnetically in the $mathit{ab}$ plane with the moment size of 6.75(6) $mu_{B}$, but rotate spirally by 165.6(1){deg} around the $mathit{c}$ axis from layer to layer. The magnetic order parameter in the critical region close to the ordering temperature, $mathit{T_{N}}$ = 15 K, shows critical behavior with a critical exponent of $beta_{Eu}$ = 0.34(1), consistent with the three-dimensional Heisenberg model. Moreover, within the experimental uncertainty, our neutron data is consistent with a model in which the Ni sublattice is not magnetically ordered.
We have studied the magnetization of CeOs2Al10 in high magnetic fields up to 55 T for H // a and constructed the magnetic phase diagram for H // a. The magnetization curve shows a concave H dependence below T_max sim40 K which is higher than the tran sition temperature T_0 sim29 K. The magnetic susceptibility along the a-axis shows a smooth and continuous decrease down to sim20 K below T_max sim40 K without showing an anomaly at T_0. From these two results, a Kondo singlet is formed below T_max and coexists with the antiferro magnetic order below T_0. We also propose that the larger suppression of the spin degrees of freedom along the a-axis than along the c-axis below T_max is associated with the origin of the antiferro magnetic component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا