ترغب بنشر مسار تعليمي؟ اضغط هنا

An invariant of rational homology 3-spheres via vector fields

132   0   0.0 ( 0 )
 نشر من قبل Tatsuro Shimizu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Tatsuro Shimizu




اسأل ChatGPT حول البحث

We define an invariant of rational homology 3-spheres via vector fields. The construction of our invariant is a generalization of both that of the Kontsevich-Kuperberg-Thurston invariant and that of Watanabes Morse homotopy invariant, which implies the equivalence of these two invariants.



قيم البحث

اقرأ أيضاً

111 - Fan Ding , Youlin Li , Zhongtao Wu 2020
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology 3-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(pm1)$-surgerie s along Legendrian links in the standard contact 3-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian two-component links in the standard contact 3-sphere to be overtwisted via their front projections.
In this short note, we exhibit an infinite family of hyperbolic rational homology $3$--spheres which do not admit any fillable contact structures. We also note that most of these manifolds do admit tight contact structures.
292 - Tadayuki Watanabe 2012
We give a generalization of Fukayas Morse homotopy theoretic approach for 2-loop Chern--Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere satisfying certain condition described by a set of ordinary differential equations.
175 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
94 - Delphine Moussard 2017
We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for knots in integral homology 3-spheres. We give a partial combinatorial description of the graded space associated with our theory and determine some cases when this description is complete. For null-homologous knots in rational homology 3-spheres with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant built from integrals in configuration spaces are universal finite type invariants for this theory; in particular it implies that they are equivalent for such knots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا