ترغب بنشر مسار تعليمي؟ اضغط هنا

Using analytic continuation for the hadronic vacuum polarization computation

166   0   0.0 ( 0 )
 نشر من قبل Marcus Petschlies
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two examples of applications of the analytic continuation method for computing the hadronic vacuum polarization function in space- and time-like momentum regions. These examples are the Adler function and the leading order hadronic contribution to the muon anomalous magnetic moment. We comment on the feasibility of the analytic continuation method and provide an outlook for possible further applications.



قيم البحث

اقرأ أيضاً

We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the spacelike and timelike regions. We provide two independent demonstrations to show that this method lea ds to the desired hadronic vacuum polarization function in Minkowski spacetime. We show with the example of the leading-order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.
The gradient-flow operator product expansion for QCD current correlators including operators up to mass dimension four is calculated through NNLO. This paves an alternative way for efficient lattice evaluations of hadronic vacuum polarization functio ns. In addition, flow-time evolution equations for flowed composite operators are derived. Their explicit form for the non-trivial dimension-four operators of QCD is given through order $alpha_s^3$.
In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic moment of the muon, lattice calculations need to reach sub-percent accuracy on the hadronic-vacuum-polarization contribution. This requires the inclusion of $mathcal{O}(alpha)$ electromagnetic corrections. The inclusion of electromagnetic interactions in lattice simulations is known to generate potentially large finite-size effects suppressed only by powers of the inverse spatial extent. In this paper we derive an analytic expression for the $mathrm{QED}_{mathrm{L}}$ finite-volume corrections to the two-pion contribution to the hadronic vacuum polarization at next-to-leading order in the electromagnetic coupling in scalar QED. The leading term is found to be of order $1/L^{3}$ where $L$ is the spatial extent. A $1/L^{2}$ term is absent since the current is neutral and a photon far away thus sees no charge and we show that this result is universal. Our analytical results agree with results from the numerical evaluation of loop integrals as well as simulations of lattice scalar $U(1)$ gauge theory with stochastically generated photon fields. In the latter case the agreement is up to exponentially suppressed finite-volume effects. For completeness we also calculate the hadronic vacuum polarization in infinite volume using a basis of 2-loop master integrals.
We construct a physically motivated model for the isospin-one non-strange vacuum polarization function Pi(Q^2) based on a spectral function given by vector-channel OPAL data from hadronic tau decays for energies below the tau mass and a successful pa rametrization, employing perturbation theory and a model for quark-hadron duality violations, for higher energies. Using a covariance matrix and Q^2 values from a recent lattice simulation, we then generate fake data for Pi(Q^2) and use it to test fitting methods currently employed on the lattice for extracting the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This comparison reveals a systematic error much larger than the few-percent total error sometimes claimed for such extractions in the literature. In particular, we find that errors deduced from fits using a Vector Meson Dominance ansatz are misleading, typically turning out to be much smaller than the actual discrepancy between the fit and exact model results. The use of a sequence of Pad{e} approximants, recently advocated in the literature, appears to provide a safer fitting strategy.
We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD sim ulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to $mu_Bapprox 300$ MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on $N_t=$ 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value $kappa = 0.0149 pm 0.0021$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا