ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal Numbers and the Borel Hierarchy

350   0   0.0 ( 0 )
 نشر من قبل Ver\\'onica Becher
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the set of absolutely normal numbers is $mathbf Pi^0_3$-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is $Pi^0_3$-complete in the effective Borel hierarchy.



قيم البحث

اقرأ أيضاً

127 - Olivier Finkel 2008
Omega-powers of finitary languages are omega languages in the form V^omega, where V is a finitary language over a finite alphabet X. Since the set of infinite words over X can be equipped with the usual Cantor topology, the question of the topologica l complexity of omega-powers naturally arises and has been raised by Niwinski, by Simonnet, and by Staiger. It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, and that there exists a context free language L such that L^omega is analytic but not Borel. But the question was still open whether there exists a finitary language V such that V^omega is a Borel set of infinite rank. We answer this question in this paper, giving an example of a finitary language whose omega-power is Borel of infinite rank.
We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekeras Constructive Concurrent Dynamic Logic.
237 - Natasha Dobrinen 2019
The well-known Galvin-Prikry Theorem states that Borel subsets of the Baire space are Ramsey: Given any Borel subset $mathcal{X}subseteq [omega]^{omega}$, where $[omega]^{omega}$ is endowed with the metric topology, each infinite subset $Xsubseteq om ega$ contains an infinite subset $Ysubseteq X$ such that $[Y]^{omega}$ is either contained in $mathcal{X}$ or disjoint from $mathcal{X}$. Kechris, Pestov, and Todorcevic point out in their seminal 2005 paper the dearth of similar results for homogeneous structures. Such results are a necessary step to the larger goal of finding a correspondence between structures with infinite dimensional Ramsey properties and topological dynamics, extending their correspondence between the Ramsey property and extreme amenability. In this article, we prove an analogue of the Galvin-Prikry theorem for the Rado graph. Any such infinite dimensional Ramsey theorem is subject to constraints following from the 2006 work of Laflamme, Sauer, and Vuksanovic. The proof uses techniques developed for the authors work on the Ramsey theory of the Henson graphs as well as some new methods for fusion sequences, used to bypass the lack of a certain amalgamation property enjoyed by the Baire space.
207 - Oleg Pikhurko 2020
We provide a gentle introduction, aimed at non-experts, to Borel combinatorics that studies definable graphs on topological spaces. This is an emerging field on the borderline between combinatorics and descriptive set theory with deep connections to many other areas. After giving some background material, we present in careful detail some basic tools and results on the existence of Borel satisfying assignments: Bore
The finite models of a universal sentence $Phi$ are the age of a structure if and only if $Phi$ has the joint embedding property. We prove that the computational problem whether a given universal sentence $Phi$ has the joint embedding property is und ecidable, even if $Phi$ is additionally Horn and the signature is binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا