ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-insulator transition and superconductivity in the two-orbital Hubbard-Holstein model for iron-based superconductors

182   0   0.0 ( 0 )
 نشر من قبل Takemi Yamada
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalization method. When the intra- and inter-orbital Coulomb interactions, $U$ and $U$, increase with $U=U$, both the local spin and orbital susceptibilities, $chi_{s}$ and $chi_{o}$, increase with $chi_{s}=chi_{o}$ in the absence of the Hunds rule coupling $J$ and the electron-phonon coupling $g$. In the presence of $J$ and $g$, there are distinct two regimes: for $J stackrel{>}{_sim} 2g^2/omega_0$ with the phonon frequency $omega_0$, $chi_{s}$ is enhanced relative to $chi_{o}$ and shows a divergence at $J=J_c$ above which the system becomes Mott insulator, while for $J stackrel{<}{_sim} 2g^2/omega_0$, $chi_{o}$ is enhanced relative to $chi_{s}$ and shows a divergence at $g=g_c$ above which the system becomes bipolaronic insulator. In the former regime, the superconductivity is mediated by antiferromagnetic fluctuations enhanced due to Fermi-surface nesting and is found to be largely dependent on carrier doping. On the other hand, in the latter regime, the superconductivity is mediated by ferro-orbital fluctuations and is observed for wide doping region including heavily doped case without the Fermi-surface nesting.



قيم البحث

اقرأ أيضاً

We explore the ground-state properties of the two-band Hubbard model with degenerate electronic bands, parametrized by nearest-neighbor hopping $t$, intra- and inter-orbital on-site Coulomb repulsions $U$ and $U^prime$, and Hund coupling $J$, focusin g on the case with $J>0$. Using Jastrow-Slater wave functions, we consider both states with and without magnetic/orbital order. Electron pairing can also be included in the wave function, in order to detect the occurrence of superconductivity for generic electron densities $n$. When no magnetic/orbital order is considered, the Mott transition is continuous for $n=1$ (quarter filling); instead, at $n=2$ (half filling), it is first order for small values of $J/U$, while it turns out to be continuous when the ratio $J/U$ is increased. A significant triplet pairing is present in a broad region around $n=2$. By contrast, singlet superconductivity (with $d$-wave symmetry) is detected only for small values of the Hund coupling and very close to half filling. When including magnetic and orbital order, the Mott insulator acquires antiferromagnetic order for $n=2$; instead, for $n=1$ the insulator has ferromagnetic and antiferro-orbital orders. In the latter case, a metallic phase is present for small values of $U/t$ and the metal-insulator transition becomes first order. In the region with $1<n<2$, we observe that ferromagnetism (with no orbital order) is particularly robust for large values of the Coulomb repulsion and that triplet superconductivity is strongly suppressed by the presence of antiferromagnetism. The case with $J=0$, which has an enlarged SU(4) symmetry due to the interplay between spin and orbital degrees of freedom, is also analyzed.
We investigate the electronic states of a one-dimensional two-orbital Hubbard model with band splitting by the exact diagonalization method. The Luttinger liquid parameter $K_{rho}$ is calculated to obtain superconducting (SC) phase diagram as a func tion of on-site interactions: the intra- and inter-orbital Coulomb $U$ and $U$, the Hund coupling $J$, and the pair transfer $J$. In this model, electron and hole Fermi pockets are produced when the Fermi level crosses both the upper and lower orbital bands. We find that the system shows two types of SC phases, the SC Roman{u-large} for $U>U$ and the SC Roman{u-large} for $U<U$, in the wide parameter region including both weak and strong correlation regimes. Pairing correlation functions indicate that the most dominant pairing for the SC Roman{u-large} (SC Roman{u-large}) is the intersite (on-site) intraorbital spin-singlet with (without) sign reversal of the order parameters between two Fermi pockets. The result of the SC Roman{u-large} is consistent with the sign-reversing s-wave pairing that has recently been proposed for iron oxypnictide superconductors.
In this work we study the two-orbital Hubbard model on a square lattice in the presence of hybridization between nearest-neighbor orbitals and a crystal-field splitting. We use a highly reliable numerical technique based on the density matrix renorma lization group to solve the dynamical mean field theory self-consistent impurity problem. We find that the orbital mixing always leads to a finite local density states at the Fermi energy in both orbitals when at least one band is metallic. When one band is doped, and the chemical potential lies between the Hubbard bands in the other band, the coherent quasiparticle peak in this orbital has an exponential behavior with the Hubbard interaction $U$.
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri ggered by several energy scales, i.e., the electron hopping $t$, the on-site electron-electron interaction $U$, the phonon energy $omega_0$, and the electron-phonon coupling $g$. At half filling, the ground state is an antiferromagnetic insulator for $U gtrsim 2g^2/omega_0$, while it is a charge-density-wave (or bi-polaronic) insulator for $U lesssim 2g^2/omega_0$. In addition to these phases, we find a superconducting phase that intrudes between them. For $omega_0/t=1$, superconductivity emerges when both $U/t$ and $2g^2/tomega_0$ are small; then, by increasing the value of the phonon energy $omega_0$, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا