ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of crystal field excitations in CuO

365   0   0.0 ( 0 )
 نشر من قبل Simo Huotari
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a study on the temperature dependence of the charge-neutral crystal field (dd) excitations in cupric oxide, using nonresonant inelastic x-ray scattering (IXS) spectroscopy. Thanks to a very high energy resolution (60 meV), we observe thermal effects on the dd excitation spectrum fine structure between temperatures of 10-320 K. With an increasing temperature, the spectra broaden considerably. We assign the temperature dependence of the dd excitations to the relatively large electron-phonon coupling.



قيم البحث

اقرأ أيضاً

The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone i n La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
Crystal-field excitations, for example in transition-metal oxides where a rare-earth element is used as a spacer between the transition-metal-oxide tetrahedra and octahedra, are assumed to be extremely robust with respect to external perturbations su ch as temperature. Using inelastic neutron scattering experiments, a giant shift of the energy of the lowest crystal-field excitation of Er3+ (4I15/2) in ErFeO3 from 0.30(2) meV to 0.75(2) meV was measured below the magnetic-ordering temperature of erbium at 4.1 K. Quantum-mechanical point-charge calculations of the crystal-field levels indicate that the shift is caused by the internal magnetic field created by the erbium spins themselves, which causes a Zeeman splitting of the erbium 4f electronic levels, and therefore a change in the energies of crystal-field transitions. To verify this explanation, the effect of an external magnetic field on the crystal-field excitations was measured by inelastic neutron scattering and compared to the field-dependent point-charge calculations. The existence of an internal magnetic exchange interaction will have implications for a deeper understanding of a broader group of phenomena such as multiferroic properties or spin frustration, which are a consequence of various competing electronic and magnetic exchange interactions.
397 - M. Taguchi , A. Chainani , S. Ueda 2015
We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe$_3$O$_4$. Fe $2p$ core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicati ve of surface effects. The bulk-sensitive spectra exhibit temperature ($T$)-dependent charge excitations across the Verwey transition at $T_V$=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe$^{3+}$, B-Fe$^{2+}$, B-Fe$^{3+}$) below $T_V$ for the Fe $2p$ spectra, and its $T-$dependent evolution. The Fe $2p$ HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at $E_F$ for the polaronic metal with remnant order above $T_V$, and a clear gap formation below $T_V$. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe$^{2+}$ and B-Fe$^{3+}$ electronic states, consistent with resistivity and bulk-sensitive optical spectra.
We report comprehensive Raman-scattering measurements on a single crystal of double-perovskite Nd2ZnIrO6 in temperature range of 4-330 K, and spanning a broad spectral range from 20 cm-1 to 5500 cm-1. The paper focuses on lattice vibrations and elect ronic transitions involving Kramers doublets of the rare-earth Nd3+ ion with local C1 site symmetry. Temperature evolution of these quasi-particle excitations have allowed us to ascertain the intricate coupling between lattice and electronic degrees of freedom in Nd2ZnIrO6. Strong coupling between phonons and crystal-field excitation is observed via renormalization of the self-energy parameter of the phonons i.e. peak frequency and line-width. The phonon frequency shows abrupt hardening and line-width narrowing below ~ 100 K for the majority of the observed first-order phonons. We observed splitting of the lowest Kramers doublets of ground state (4I9/2) multiplets i.e. lifting of the Kramers degeneracy, prominently at low-temperature (below ~ 100 K), attributed to the Nd-Nd/Ir exchange interactions and the intricate coupling with the lattice degrees of freedom. The observed splitting is of the order of ~ 2-3 meV and is consistent with the estimated value. We also observed a large number of high-energy modes, 46 in total, attributed to the intra-configurational transitions between 4f3 levels of Nd3+ coupled to the phonons reflected in their anomalous temperature evolution.
Crystal-field excitations in transition-metal oxides where -rare-earth elements locate in the space between the transition-metal-oxide tetrahedra and octahedra, are assumed to be robust with respect to external perturbations such as temperature. Usin g inelastic neutron-scattering experiments, a giant shift of the energy of the lowest crystal-field excitation of Er$^{3+}$ ($^{4}$I$_{15/2}$) in ErFeO$_3$ from 0.35 meV to 0.75 meV was observed on cooling from 10K to 1.5K through the magnetic ordering temperature of Er$^{3+}$ at 4.1 K. A crystal-field model was proposed to explain the observed crystal field excitations in this work. The model indicates the lowest-energy crystal-field excitation in ErFeO$_3$ is the first Kramers doublet above the ground state. Its energy substantially shifts by the internal field induced by the ordered Er$^{3+}$ magnetic moments. Further magnetic-field-dependent measurements provide strong supportive evidence for this scenario. By fitting the external magnetic-field dependency of the crystal-field excitation energy, the internal field generated by Er$^{3+}$ magnetic moments was derived to be ~0.33meV. The result indicates that the internal field of Er$^{3+}$ magnetic moments contribute to the energy shift of the crystal-field excitations. The giant energy shift under fields could be attributed to the anisotropy of the large effective g-factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا