ﻻ يوجد ملخص باللغة العربية
Propositional Dynamic Logic or PDL was invented as a logic for reasoning about regular programming constructs. We propose a new perspective on PDL as a multi-agent strategic logic (MASL). This logic for strategic reasoning has group strategies as first class citizens, and brings game logic closer to standard modal logic. We demonstrate that MASL can express key notions of game theory, social choice theory and voting theory in a natural way, we give a sound and complete proof system for MASL, and we show that MASL encodes coalition logic. Next, we extend the language to epistemic multi-agent strategic logic (EMASL), we give examples of what it can express, we propose to use it for posing new questions in epistemic social choice theory, and we give a calculus for reasoning about a natural class of epistemic game models. We end by listing avenues for future research and by tracing connections to a number of other logics for reasoning about strategies.
We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of standard powers, though staying short of modal bisimulati
This article extends the idea of solving parity games by strategy iteration to non-deterministic strategies: In a non-deterministic strategy a player restricts himself to some non-empty subset of possible actions at a given node, instead of limiting
The literature on awareness modeling includes both syntax-free and syntax-based frameworks. Heifetz, Meier & Schipper (HMS) propose a lattice model of awareness that is syntax-free. While their lattice approach is elegant and intuitive, it precludes
The interplay between exploration and exploitation in competitive multi-agent learning is still far from being well understood. Motivated by this, we study smooth Q-learning, a prototypical learning model that explicitly captures the balance between
This work develops a proximal primal-dual decentralized strategy for multi-agent optimization problems that involve multiple coupled affine constraints, where each constraint may involve only a subset of the agents. The constraints are generally spar