ﻻ يوجد ملخص باللغة العربية
There are a number of tasks in quantum information science that exploit non-transitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its thermodynamical cost,provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.
Multi-photon quantum interference is the underlying principle for optical quantum information processing protocols. Indistinguishability is the key to quantum interference. Therefore, the success of many protocols in optical quantum information proce
We introduce a simple yet versatile protocol to inverse engineer the time-dependent Hamiltonian in two- and three level systems. In the protocol, by utilizing a universal SU(2) transformation, a given speedup goal can be obtained with large freedom t
We address quantum state engineering of single- and two-mode states by means of non-deterministic noiseless linear amplifiers (NLAs) acting on Gaussian states. In particular, we show that NLAs provide an effective scheme to generate highly non-Gaussi
We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. W
We report some nonsmooth dynamics of a Bloch state in a one-dimensional tight binding model with the periodic boundary condition. After a sudden change of the potential of an arbitrary site, quantities like the survival probability of the particle in