ترغب بنشر مسار تعليمي؟ اضغط هنا

Filamentation instability of counter-streaming laser-driven plasmas

216   0   0.0 ( 0 )
 نشر من قبل William Fox
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.



قيم البحث

اقرأ أيضاً

Nuclear fusion reactions are the most important processes in nature to power stars and produce new elements, and lie at the center of the understanding of nucleosynthesis in the universe. It is critically important to study the reactions in full plas ma environments that are close to true astrophysical conditions. By using laser-driven counter-streaming collisionless plasmas, we studied the fusion D$+$D$rightarrow n +^3$He in a Gamow-like window around 27 keV. The results show that astrophysical nuclear reaction yield can be modulated significantly by the self-generated electromagnetic fields and the collective motion of the plasma. This plasma-version mini-collider may provide a novel tool for studies of astrophysics-interested nuclear reactions in plasma with tunable energies in earth-based laboratories.
100 - X. H. Yang , H. B. Zhuo , H. Xu 2016
Generation of relativistic electron (RE) beams during ultraintense laser pulse interaction with plasma targets is studied by collisional particle-in-cell (PIC) simulations. Strong magnetic field with transverse scale length of several local plasma sk in depths, associated with RE currents propagation in the target, is generated by filamentation instability (FI) in collisional plasmas, inducing a great enhancement of the divergence of REs compared to that of collisionless cases. Such effect is increased with laser intensity and target charge state, suggesting that the RE divergence might be improved by using low-Z materials under appropriate laser intensities in future fast ignition experiments and in other applications of laser-driven electron beams.
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propa gator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.
107 - G. Raj , O. Kononenko , A. Doche 2019
We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emit tance, highly relativistic electron bunches from a laser wakefield accelerator, and a line-integrated $B$-field of $2.70 pm 0.39,rm kT,mu m$ was measured. Three-dimensional, fully relativistic particle-in-cell simulations indicate that such fluctuations originate from a Weibel-type current filamentation instability developing at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results highlight the potential of wakefield-accelerated electron beams for ultrafast probing of relativistic laser-driven phenomena.
Two counter-propagating cool and equally dense electron beams are modelled with particle-in-cell (PIC) simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasi-planar filamen t boundary. It is confirmed, that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا