ﻻ يوجد ملخص باللغة العربية
Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS$_2$. Within the local density approximation the material is a semi-metal both in the bulk and in the monolayer form. Most interestingly we observe a Kohn anomaly in the bulk phonon dispersion, which turns into a charge density wave instability when TiS$_2$ is thinned to less than four monolayers. Such charge density wave phase can be tuned by compressive strain, which appears to be the control parameter of the instability.
How magnetism emerges in low-dimensional materials such as transition metal dichalcogenides at the monolayer limit is still an open question. Herein, we present a comprehensive study of the magnetic properties of single crystal and monolayer VSe$_{2}
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in th
Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe$_2$. While scanning tunnelling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave tr
Diffraction measurements performed via transmission electron microscopy and high resolution X-ray scattering reveal two distinct charge density wave transitions in Gd$_2$Te$_5$ at $T_{c1}$ = 410(3) and $T_{c2}$ = 532(3) K, associated with the textit{
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical