ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM

119   0   0.0 ( 0 )
 نشر من قبل Zhizhen Zhao
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of Cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations.



قيم البحث

اقرأ أيضاً

Cryo-EM reconstruction algorithms seek to determine a molecules 3D density map from a series of noisy, unlabeled 2D projection images captured with an electron microscope. Although reconstruction algorithms typically model the 3D volume as a generic function parameterized as a voxel array or neural network, the underlying atomic structure of the protein of interest places well-defined physical constraints on the reconstructed structure. In this work, we exploit prior information provided by an atomic model to reconstruct distributions of 3D structures from a cryo-EM dataset. We propose Cryofold, a generative model for a continuous distribution of 3D volumes based on a coarse-grained model of the proteins atomic structure, with radial basis functions used to model atom locations and their physics-based constraints. Although the reconstruction objective is highly non-convex when formulated in terms of atomic coordinates (similar to the protein folding problem), we show that gradient descent-based methods can reconstruct a continuous distribution of atomic structures when initialized from a structure within the underlying distribution. This approach is a promising direction for integrating biophysical simulation, learned neural models, and experimental data for 3D protein structure determination.
Cryo-electron tomography (Cryo-ET) is a 3D imaging technique that enables the systemic study of shape, abundance, and distribution of macromolecular structures in single cells in near-atomic resolution. However, the systematic and efficient $textit{d e novo}$ recognition and recovery of macromolecular structures captured by Cryo-ET are very challenging due to the structural complexity and imaging limits. Even macromolecules with identical structures have various appearances due to different orientations and imaging limits, such as noise and the missing wedge effect. Explicitly disentangling the semantic features of macromolecules is crucial for performing several downstream analyses on the macromolecules. This paper has addressed the problem by proposing a 3D Spatial Variational Autoencoder that explicitly disentangle the structure, orientation, and shift of macromolecules. Extensive experiments on both synthesized and real cryo-ET datasets and cross-domain evaluations demonstrate the efficacy of our method.
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional structure of a macromolecule from $10^{4-7}$ noisy and randomly oriented two-dimensional projections. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images.
Motivation: Cryo-Electron Tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at sub-molecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domainmay perform poorly in predicting subtomogram classes in the target domain. Results: In this paper, we adapt a few shot domain adaptation method for deep learning based cross-domain subtomogram classification. The essential idea of our method consists of two parts: 1) take full advantage of the distribution of plentiful unlabeled target domain data, and 2) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods.
Particle picking is a time-consuming step in single-particle analysis and often requires significant interventions from users, which has become a bottleneck for future automated electron cryo-microscopy (cryo-EM). Here we report a deep learning frame work, called DeepPicker, to address this problem and fill the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule training strategy to capture common features of particles from previously-analyzed micrographs, and thus does not require any human intervention during particle picking. Tests on the recently-published cryo-EM data of three complexes have demonstrated that our deep learning based scheme can successfully accomplish the human-level particle picking process and identify a sufficient number of particles that are comparable to those manually by human experts. These results indicate that DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا