ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic neutron scattering study of crystal field excitations of Nd3+ in NdFeAsO

145   0   0.0 ( 0 )
 نشر من قبل Yinguo Xiao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering experiments were performed to investigate the crystalline electric field (CEF) excitations of Nd3+ (J = 9/2) in the iron pnictide NdFeAsO. The crystal field level structures for both the high-temperature paramagnetic phase and the low-temperature antiferromagnetic phase of NdFeAsO are constructed. The variation of CEF excitations of Nd3+ reflects not only the change of local symmetry but also the change of magnetic ordered state of the Fe sublattice. By analyzing the crystal field interaction with a crystal field Hamiltonian, the crystal field parameters are obtained. It was found that the sign of the fourth and sixth-order crystal field parameters change upon the magnetic phase transition at 140 K, which may be due to the variation of exchange interactions between the 4f and conduction electrons.



قيم البحث

اقرأ أيضاً

Magnetic excitations in Ba(Fe0.94Co0.06)2As2 are studied by polarized inelastic neutron scattering (INS) above and below the superconducting transition. In the superconducting state we find clear evidence for two resonance-like excitations. At a high er energy of about 8 meV there is an isotropic resonance mode with weak dispersion along the c-direction. In addition we find a lower excitation at 4 meV that appears only in the c-polarized channel and whose intensity strongly varies with the L-component of the scattering vector. These resonance excitations behave remarkably similar to the gap modes in the antiferromagnetic phase of the parent compound BaFe2As2.
We have investigated the phonon and the magnetic excitations in LaCoO3 by inelastic neutron scattering measurements. The acoustic phonon dispersions show some characteristic features of the folded Brillouin zone (BZ) for the rhombohedrally distorted perovskite structure containing two chemical formula units of LaCoO3 in the unit cell. We observed two transverse optical (TO) phonon branches along (delta, delta, delta), consistent with previously reported Raman active Eg modes which show remarkable softening associated with the spin-state transition [Ishikawa et al., (Phys. Rev. Lett. 93 (2004) 136401.)]. We found that the softening takes place in the TO mode over the whole BZ. In contrast, the acoustic phonons show no anomalous softening associated with the spin-state transition. The low-energy paramagnetic scattering at 8 K is weak, increasing towards a maximum at E > 15 meV, consistent with excitation of the nonmagnetic low-spin to magnetic intermediate-spin state of Co 3+ ions.
We use neutron scattering to study the Pr$^{3+}$ crystalline electric field (CEF) excitations in the filled skutterudite PrOs$_4$As$_{12}$. By comparing the observed levels and their strengths under neutron excitation with the theoretical spectrum an d neutron excitation intensities, we identify the Pr$^{3+}$ CEF levels, and show that the ground state is a magnetic $Gamma_4^{(2)}$ triplet, and the excited states $Gamma_1$, $Gamma_4^{(1)}$ and $Gamma_{23}$ are at 0.4, 13 and 23 meV, respectively. A comparison of the observed CEF levels in PrOs$_4$As$_{12}$ with the heavy fermion superconductor PrOs$_4$Sb$_{12}$ reveals the microscopic origin of the differences in the ground states of these two filled skutterudites.
264 - S. Wakimoto , K. Ishii , H. Kimura 2013
We have performed resonant inelastic x-ray scattering (RIXS) near the Cu-K edge on cuprate superconductors La(2-x)Sr(x)CuO(4), La(2-x)Ba(x)CuO(4), La(2-x)Sr(x)Cu(1-y)Fe(y)O(4) and Bi(1.76)Pb(0.35)Sr(1.89)CuO(6+d), covering underdoped to heavily overd oped regime and focusing on charge excitations inside the charge-transfer gap. RIXS measurements of the 214 systems with Ei = 8.993 keV have revealed that the RIXS intensity at 1 eV energy transfer has a minimum at (0,0) and maxima at (0.4pi, 0) and $(0, 0.4pi) for all doping points regardless of the stripe ordered state, suggesting that the corresponding structure is not directly related to stripe order. Measurements with Ei = 9.003 keV on metallic La(1.7)Sr(0.3)CuO(4) and Bi(1.76)Pb(0.35)Sr(1.89)CuO(6+d) exhibit a dispersive intra-band excitation below 4 eV, similar to that observed in the electron-doped Nd(1.85)Ce(0.15)CuO(4). This is the first observation of a dispersive intra-band excitation in a hole doped system, evidencing that both electron and hole doped systems have a similar dynamical charge correlation function.
We report an Fe $K$-edge resonant inelastic X-ray scattering (RIXS) study of K$_{0.83}$Fe$_{1.53}$Se$_2$. This material is an insulator, unlike many parent compounds of iron-based superconductors. We found a sharp excitation around 1 eV, which is res onantly enhanced when the incident photon energy is tuned near the pre-edge region of the absorption spectrum. The spectral weight and line shape of this excitation exhibit clear momentum dependence. In addition, we observe momentum-independent broad interband transitions at higher excitation energy of 3-7 eV. Calculations based on a 70 band $dp$ orbital model, using a moderate $U_{rm eff}approx 2.5$ eV, indicate that the $sim$1 eV feature originates from the correlated Fe 3$d$ electrons, with a dominant $d_{xz}$ and $d_{yz}$ orbital character. We find that a moderate $U_{rm eff}$ yields a satisfying agreement with the experimental spectra, suggesting that the electron correlations in the insulating and metallic iron based superconductors are comparable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا