ترغب بنشر مسار تعليمي؟ اضغط هنا

Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

102   0   0.0 ( 0 )
 نشر من قبل JaeSub Hong
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm x 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.



قيم البحث

اقرأ أيضاً

105 - Q. Li 2008
The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pixel anodes fabricated on the anode surface with the area up to 2 cm x2 cm and the thickness of CZT detectors ranges from 0.5 cm to 1 cm. Energy spectra resolution and electron mobility-lifetime products of 8x8 pixels CZT detector with different thicknesses have been investigated.
We report our in-depth study of Cd-Zn-Te (CZT) crystals to determine an optimum pixel and guard band configuration for Hard X-ray imaging and spectroscopy. We tested 20x20x5mm crystals with 8x8 pixels on a 2.46mm pitch. We have studied different type s of cathode / anode contacts and different pixel pad sizes. We present the measurements of leakage current as well as spectral response for each pixel. Our I-V measurement setup is custom designed to allow automated measurements of the I-V curves sequentially for all 64 pixels, whereas the radiation properties measurement setup allows for interchangeable crystals with the same XAIM3.2 ASIC readout from IDEAS. We have tested multiple crystals of each type, and each crystal in different positions to measure the variation between individual crystals and variation among the ASIC channels. We also compare the same crystals with and without a grounded guard band deposited on the crystal side walls vs. a floating guard band and compare results to simulations. This study was carried out to find the optimum CZT crystal configuration for prototype detectors for the proposed Black-Hole Finder mission, EXIST.
135 - Yongzhi Yin , Qi Liu , Dapeng Xu 2013
We are currently investigating the spatial resolution of highly pixelated Cadmium Zinc Telluride (CZT) detector for imaging applications. A 20 mm {times} 20 mm {times} 5 mm CZT substrate was fabricated with 600 {mu}m pitch pixels (500 {mu}m anode pix els with 100 {mu}m gap) and coplanar cathode. Charge sharing between two pixels was studied using collimated 122 keV gamma ray source. Experiments show a resolution of 125 {mu}m FWHM for double-pixel charge sharing events when the 600 {mu}m pixelated and 5 mm thick CZT detector biased at -1000 V. In addition, we analyzed the energy response of the 600 {mu}m pitch pixelated CZT detector.
The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.
Wide-field (> 100 deg$^2$) hard X-ray coded-aperture telescopes with high angular resolution (< 2) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without assis tance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a time scale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to high resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during the high-altitude balloon flight in Fall, 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with simulated ideal Poisson background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا