ﻻ يوجد ملخص باللغة العربية
We investigate the properties of PT-symmetric tight-binding models by considering both bounded and unbounded models. For the bounded case, we obtain closed form expressions for the corresponding energy spectra and we analyze the structure of eigenstates as well as their dependence on the gain/loss contrast parameter. For unbounded PT-lattices, we explore their scattering properties through the development of analytical models. Based on our approach we identify a mechanism that is responsible to the emergence of localized states that are entirely due to the presence of gain and loss. The derived expressions for the transmission and reflection coefficients allow one to better understand the role of PT-symmetry in energy transport problems occurring in such PT-symmetric tight-binding settings. Our analytical results are further exemplified via pertinent examples.
We numerically analyze the distribution of scattering resonance widths in one- and quasi-one dimensional tight binding models, in the localized regime. We detect and discuss an algebraic decay of the distribution, similar, though not identical, to recent theoretical predictions.
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to suppor
We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati
A Parity-Time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrodinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by fi
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo