ﻻ يوجد ملخص باللغة العربية
We study the problem of visibility in polyhedral terrains in the presence of multiple viewpoints. We consider a triangulated terrain with $m>1$ viewpoints (or guards) located on the terrain surface. A point on the terrain is considered emph{visible} if it has an unobstructed line of sight to at least one viewpoint. We study several natural and fundamental visibility structures: (1) the visibility map, which is a partition of the terrain into visible and invisible regions; (2) the emph{colored} visibility map, which is a partition of the terrain into regions whose points have exactly the same visible viewpoints; and (3) the Voronoi visibility map, which is a partition of the terrain into regions whose points have the same closest visible viewpoint. We study the complexity of each structure for both 1.5D and 2.5D terrains, and provide efficient algorithms to construct them. Our algorithm for the visibility map in 2.5D terrains improves on the only existing algorithm in this setting. To the best of our knowledge, the other structures have not been studied before.
For a fixed virtual scene (=collection of simplices) S and given observer position p, how many elements of S are weakly visible (i.e. not fully occluded by others) from p? The present work explores the trade-off between query time and preprocessing s
An important task when working with terrain models is computing viewsheds: the parts of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral terrain, the viewshed is composed of the union of all the triangle parts t
An important problem in terrain analysis is modeling how water flows across a terrain creating floods by forming channels and filling depressions. In this paper we study a number of emph{flow-query} related problems: Given a terrain $Sigma$, represen
We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let $P$ be a set of $n$ points in the plane and let $S$ be a set of non-crossing line se
We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane $z=0$ and edges are unobstructed lines of sight parallel to the $x$- or $y$-axis. We prove that: $(i)$ Ev