ترغب بنشر مسار تعليمي؟ اضغط هنا

Degenerations of invariant lagrangian manifolds

278   0   0.0 ( 0 )
 نشر من قبل Mauricio D. Garay
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Mauricio Garay




اسأل ChatGPT حول البحث

We consider a pair (H,I) where I is an involutive ideal of a Poisson algebra and H lies in I. We show that if I defines a 2n-gon singularity then, under arithmetical conditions on H, any deformation of H can integrated as a deformation of (H,I).



قيم البحث

اقرأ أيضاً

149 - Cheuk Yu Mak , Weiwei Wu 2018
We study Dehn twists along Lagrangian submanifolds that are finite quotients of spheres. We decribe the induced auto-equivalences to the derived Fukaya category and explain its relation to twists along spherical functors.
147 - Cheuk Yu Mak , Ivan Smith 2019
Let $omega$ denote an area form on $S^2$. Consider the closed symplectic 4-manifold $M=(S^2times S^2, Aomega oplus a omega)$ with $0<a<A$. We show that there are families of displaceable Lagrangian tori $L_{0,x},, L_{1,x} subset M$, for $x in [0,1]$, such that the two-component link $L_{0,x} cup L_{1,x}$ is non-displaceable for each $x$.
We study global properties of the global (center-)stable manifold of a normally attracting invariant manifold (NAIM), the special case of a normally hyperbolic invariant manifold (NHIM) with empty unstable bundle. We restrict our attention to continu ous-time dynamical systems, or flows. We show that the global stable foliation of a NAIM has the structure of a topological disk bundle, and that similar statements hold for inflowing NAIMs and for general compact NHIMs. Furthermore, the global stable foliation has a $C^k$ disk bundle structure if the local stable foliation is assumed $C^k$. We then show that the dynamics restricted to the stable manifold of a compact inflowing NAIM are globally topologically conjugate to the linearized transverse dynamics at the NAIM. Moreover, we give conditions ensuring the existence of a global $C^k$ linearizing conjugacy. We also prove a $C^k$ global linearization result for inflowing NAIMs; we believe that even the local version of this result is new, and may be useful in applications to slow-fast systems. We illustrate the theory by giving applications to geometric singular perturbation theory in the case of an attracting critical manifold: we show that the domain of the Fenichel Normal Form can be extended to the entire global stable manifold, and under additional nonresonance assumptions we derive a smooth global linear normal form.
Chaotic attractors in the two-dimensional border-collision normal form (a piecewise-linear map) can persist throughout open regions of parameter space. Such robust chaos has been established rigorously in some parameter regimes. Here we provide forma l results for robust chaos in the original parameter regime of [S. Banerjee, J.A. Yorke, C. Grebogi, Robust Chaos, Phys. Rev. Lett. 80(14):3049--3052, 1998]. We first construct a trapping region in phase space to prove the existence of a topological attractor. We then construct an invariant expanding cone in tangent space to prove that tangent vectors expand and so no invariant set can have only negative Lyapunov exponents. Under additional assumptions we also characterise an attractor as the closure of the unstable manifold of a fixed point.
We use local Hamiltonian torus actions to degenerate a symplectic manifold to a normal crossings symplectic variety in a smooth one-parameter family. This construction, motivated in part by the Gross-Siebert and B. Parkers programs, contains a multif old version of the usual (two-fold) symplectic cut construction and in particular splits a symplectic manifold into several symplectic manifolds containing normal crossings symplectic divisors with shared irreducible components in one step.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا