ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for pulsations in short gamma-ray bursts to constrain their progenitors

197   0   0.0 ( 0 )
 نشر من قبل Simone Dichiara Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We searched for periodic and quasiperiodic signal in the prompt emission of a sample of 44 bright short gamma-ray bursts detected with Fermi/GBM, Swift/BAT, and CGRO/BATSE. The aim was to look for the observational signature of quasiperiodic jet precession which is expected from black hole-neutron star mergers, but not from double neutron star systems. Thus, this kind of search holds the key to identify the progenitor systems of short GRBs and, in the wait for gravitational wave detection, represents the only direct way to constrain the progenitors. We tailored our search to the nature of the expected signal by properly stretching the observed light curves by an increasing factor with time, after calibrating the technique on synthetic curves. In none of the GRBs of our sample we found evidence for periodic or quasiperiodic signals. In particular, for the 7 unambiguously short GRBs with best S/N we obtained significant upper limits to the amplitude of the possible oscillations. This result suggests that BH-NS systems do not dominate the population of short GRB progenitors as described by the kinematic model of Stone, Loeb, & Berger (2013).



قيم البحث

اقرأ أيضاً

We extract 18 candidate short gamma-ray bursts (SGRBs) with precursors from 660 SGRBs observed by {em Fermi} and {em Swift} satellites, and carry out a comprehensive analysis on their temporal and spectral features. We obtain the following results: ( 1) For a large fraction of candidates, the main burst durations are longer than their precursor durations, comparable to their quiescent times from the end of precursors to the beginning of their main bursts. (2) The average flux of precursors tends to increase as their main bursts brighten. (3) As seen from the distributions of hardness ratio and spectral fitting, the precursors are slightly spectrally softer with respect to the main bursts. Moreover, a significant portion of precursors and all main bursts favor a non-thermal spectrum. (4) The precursors might be a probe of the progenitor properties of SGRBs such as the magnetic field strength and the crustal equation of state if they arise from some processes before mergers of binary compact objects rather than post-merger processes.
We consider the spatial offsets of short hard gamma-ray bursts (SHBs) from their host galaxies. We show that all SHBs with extended duration soft emission components lie very close to their hosts. We suggest that NS-BH binary mergers offer a natural explanation for the properties of this extended duration/low offset group. SHBs with large offsets have no observed extended emission components and are less likely to have an optically detected afterglow, properties consistent with NS-NS binary mergers occurring in low density environments.
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emiss ion (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.
283 - Edo Berger 2013
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic core-collapse supernovae, their exclusive location in star-forming galaxies, and their strong correlation with bright ultraviolet regions within their host galaxies. Short GRBs have long been suspected on theoretical grounds to arise from compact object binary mergers (NS-NS or NS-BH). The discovery of short GRB afterglows in 2005, provided the first insight into their energy scale and environments, established a cosmological origin, a mix of host galaxy types, and an absence of associated supernovae. In this review I summarize nearly a decade of short GRB afterglow and host galaxy observations, and use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties of the circumburst environments. The preponderance of the evidence points to compact object binary progenitors, although some open questions remain. Based on this association, observations of short GRBs and their afterglows can shed light on the on- and off-axis electromagnetic counterparts of gravitational wave sources from the Advanced LIGO/Virgo experiments.
93 - Davide Lazzati 2020
The detection of GW170817, its extensive multi-wavelength follow-up campaign, and the large amount of theoretical development and interpretation that followed, have resulted in a significant step forward in the understanding of the binary neutron sta r merger phenomenon as a whole. One of its aspects is seeing the merger as a progenitor of short gamma-ray bursts (SGRB), which will be the subject of this review. On the one hand, GW170817 observations have confirmed some theoretical expectations, exemplified by the confirmation that binary neutron star mergers are the progenitors of SGRBs. In addition, the multimessenger nature of GW170817 has allowed for gathering of unprecedented data, such as the trigger time of the merger, the delay with which the gamma-ray photons were detected, and the brightening afterglow of an off-axis event. All together, the incomparable richness of the data from GW170817 has allowed us to paint a fairly detailed picture of at least one SGRB. I will detail what we learned, what new questions have arisen, and the perspectives for answering them when a sample of GW170817-comparable events have been studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا