ﻻ يوجد ملخص باللغة العربية
The orthoperovskites TbCoO$_3$ and DyCoO$_3$ with Co$^{3+}$ in a non-magnetic low-spin state have been investigated by neutron diffraction down to 0.25 K. Magnetic ordering is evidenced below $T_N=3.3$ K and 3.6 K, respectively, and the ordered arrangements are of canted type, A$_x$G$_y$ for TbCoO$_3$ and G$_x$A$_y$ for DyCoO$_3$ in Bertauts notation. The experiments are confronted with the first-principle calculations of the crystal field and magnetism of Tb$^{3+}$ and Dy$^{3+}$ ions, located in the $Pbnm$ structure on sites of $C_s$ point symmetry. Both these ions exhibit an Ising behavior, which originates in the lowest energy levels, in particular in accidental doublet of non-Kramers Tb$^{3+}$ ($4f^8$ configuration) and in ground Kramers doublet of Dy$^{3+}$ ($4f^9$) and it is the actual reason for the non-collinear AFM structures. Very good agreement between the experiment and theory is found. For comparison, calculations of the crystal field and magnetism for other systems with Kramers ions, NdCoO$_3$ and SmCoO$_3$, are also included.
Motivated by the puzzling report of the observation of a ferromagnetic insulating state in LaMnO$_3$/SrTiO$_3$ heterostructures, we calculate the electronic and magnetic state of LaMnO$_3$, coherently matched to a SrTiO$_3$ square substrate within a
We argue that the centrosymmetric $C2/c$ symmetry in BiMnO$_3$ is spontaneously broken by antiferromagnetic (AFM) interactions existing in the system. The true symmetry is expected to be $Cc$, which is compatible with the noncollinear magnetic ground
Microscopic origin of the ferromagnetic (FM) exchange coupling in CrCl$_3$ and CrI$_3$, their common aspects and differences, are investigated on the basis of density functional theory combined with realistic modeling approach for the analysis of int
Two-dimensional (2D) layered magnetic materials are generating a great amount of interest for the next generation of electronic devices thanks to their remarkable properties associated to spin dynamics. The recently discovered layered VI$_3$ ferromag
Small single crystals of Rb$_3$Ni$_2$(NO$_3$)$_7$ were obtained by crystallization from anhydrous nitric acid solution of rubidium nitrate and nickel nitrate hexahydrate. The basic elements of the crystal structure of this new compound are isolated s