ﻻ يوجد ملخص باللغة العربية
Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We find that due to the entropy dependence of freeze-out yields from nuclear statistical equilibrium, [Mn/Fe] strongly depends on the mass of the exploding WD, with near-Chandraskher mass WDs producing substantially higher [Mn/Fe] than sub-Chandrasekhar mass WDs. Of all nucleosynthetic sources potentially influencing the chemical evolution of Mn, only explosion models involving the thermonuclear incineration of near-Chandrasekhar mass WDs predict solar or super-solar [Mn/Fe]. Consequently, we find in our chemical evolution calculations that the observed [Mn/Fe] in the Solar neighborhood at [Fe/H] > 0.0 cannot be reproduced without near-Chandrasekhar mass SN Ia primaries. Assuming that 50 per cent of all SNe Ia stem from explosive thermonuclear burning in near-Chandrasekhar mass WDs results in a good match to data.
Manganese (Mn) abundances are sensitive probes of the progenitors of Type Ia supernovae (SNe). In this work, we present a catalog of manganese abundances in dwarf spheroidal satellites of the Milky Way, measured using medium-resolution spectroscopy.
The ejected mass distribution of type Ia supernovae directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the expl
The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remna
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally p
We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining