ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of TiO$_x$ barriers for their use in hybrid Josephson and tunnelling junctions based on Ba-122 thin films

147   0   0.0 ( 0 )
 نشر من قبل Sebastian D\\\"oring
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We tested oxidized titanium layers as barriers for hybrid Josephson junctions with high $I_cR_n$-products and for the preparation of junctions for tunneling spectroscopy. For that we firstly prepared junctions with conventional superconductor electrodes lead and niobium, respectively. By tuning the barrier thickness we were able to change the junctions behavior from a Josephson junction to tunnel-like behavior applicable for quasi-particle spectroscopy. Subsequently, we transferred the technology to junctions using Co-doped BaFe$_2$As$_2$ thin films prepared by pulsed laser deposition as base electrode and evaporated Pb as counter electrode. For barriers with a thickness of 1.5,nm we observe clear Josephson effects with $I_cR_n$,$approx$,90,$mu$V at 4.2,K. These junctions behave SNS-like and are dominated by Andreev reflection transport mechanism. For junctions with barrier thickness of 2.0,nm and higher no Josephson but SIS- or SINS-like behavior with a tunnel-like conductance spectrum was observed.



قيم البحث

اقرأ أيضاً

278 - C. Kopas , S. Zhang , J. Gonzales 2021
Germanium thin films are an excellent candidate for use as a low-loss dielectric in superconducting microwave resonators, a low-loss inter-layer metal wiring dielectric, and passivation layers in microwave and Josephson junction devices. In Ge/Nb str uctures deposited at 400 {deg}C, we observe intermixing over as much as 20 nm. The addition of a 10 nm Ta diffusion barrier layer reduces the superconductor/dielectric intermixing to less than 5 nm and enhances the structural properties of deposited a-Ge layers based on Raman spectroscopy. Additionally, superconducting microwave resonators fabricated at room-temperature on crystalline Ge substrates with a Ta barrier layer show marked improvement in total and power-dependent two-level system microwave losses.
We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
The temperature dependence of the resistivity of epitaxial Ba(Fe_(1-x)Co_x)2As2 thin films (with nominal doping x = 0.08, 0.10 and 0.15) has been analyzed and compared with analogous measurements on single crystals taken from literature. The rho(T) o f thin films looks different from that of single crystals, even when the cobalt content is the same. All rho(T) curves can be fitted by considering an effective two-band model (with holes and electrons bands) in which the electrons are more strongly coupled with the bosons (spin fluctuations) than holes, while the effect of impurities is mainly concentrated in the hole band. Within this model the mediating boson has the same characteristic energy in single crystals and thin films, but the shape of the transport spectral function at low energy has to be very different, leading to a hardening of the electron-boson spectral function in thin films, associated with the strain induced by the substrate.
We study the electrical transport of vertically-stacked Josephson tunnel junctions using GdBa$_2$Cu$_3$O$_{7-d}$ electrodes and a BaTiO$_3$ barrier with thicknesses between 1 nm and 3 nm. The junctions with an area of 20 mm x 20 mm were fabricated co mbining optical lithography and ion etching using GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) / BaTiO$_3$ (1 - 3 nm) / GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) trilayers growth by sputtering on (100) SrTiO$_3$. Current-voltage measurements at low temperatures show a Josephson coupling for junctions with BaTiO$_3$ barriers of 1 nm and 2 nm. Reducing the barrier thickness bellow a critical thickness seems to suppress the ferroelectric nature of the BaTiO$_3$. The Josephson coupling temperature is strongly reduced for increasing barrier thicknesses, which may be related to the suppression of the superconducting critical temperature in the bottom GdBa$_2$Cu$_3$O$_{7-d}$ due to stress. The Josephson energies at 12 K are of $approx$ 1.5 mV and $approx$ 7.5 mV for BaTiO$_3$ barriers of 1 nm and 2 nm. Fraunhofer patterns are consistent with fluctuations in the critical current due to structural inhomogeneities in the barriers. Our results are promising for the development of Josephson junctions using high-T$_c$ electrodes with energy gaps much higher than those usually present in conventional low-temperature superconductors.
109 - V.G. Kogan , R.G Mints 2014
It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the field dependence of the junction critical current $I_c(H)$. When the vortex is trapp ed at certain positions in the strip middle, the pattern $I_c(H)$ has zero at $H=0$ instead of the traditional maximum of 0-type junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds approximately $2W$, $I_c(H)$ is no longer sensitive to the vortex presence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا