ﻻ يوجد ملخص باللغة العربية
Large, complex, multi-scale, multi-physics simulation codes, running on high performance com-puting (HPC) platforms, have become essential to advancing science and engineering. These codes simulate multi-scale, multi-physics phenomena with unprecedented fidelity on petascale platforms, and are used by large communities. Continued ability of these codes to run on future platforms is as crucial to their communities as continued improvements in instruments and facilities are to experimental scientists. However, the ability of code developers to do these things faces a serious challenge with the paradigm shift underway in platform architecture. The complexity and uncertainty of the future platforms makes it essential to approach this challenge cooperatively as a community. We need to develop common abstractions, frameworks, programming models and software development methodologies that can be applied across a broad range of complex simulation codes, and common software infrastructure to support them. In this position paper we express and discuss our belief that such an infrastructure is critical to the deployment of existing and new large, multi-scale, multi-physics codes on future HPC platforms.
The Landau collision integral is an accurate model for the small-angle dominated Coulomb collisions in fusion plasmas. We investigate a high order accurate, fully conservative, finite element discretization of the nonlinear multi-species Landau integ
This deliverable reports the results of white-box methodologies and early results of the first prototype of libraries and programming abstractions as available by project month 18 by Work Package 2 (WP2). It reports i) the latest results of Task 2.2
Many applications from geosciences require simulations of seismic waves in porous media. Biots theory of poroelasticity describes the coupling between solid and fluid phases and introduces a stiff source term, thereby increasing computational cost an
In this work we present a robust interface coupling algorithm called Compact Interface quasi-Newton (CIQN). It is designed for computationally intensive applications using an MPI multi-code partitioned scheme. The algorithm allows to reuse informatio
To facilitate flexible and efficient structural bioinformatics analyses, new functionality for three-dimensional structure processing and analysis has been introduced into PyCogent -- a popular feature-rich framework for sequence-based bioinformatics