ﻻ يوجد ملخص باللغة العربية
This white paper discusses a repurposed mission for the Kepler spacecraft that focusses on solving outstanding problems in planet formation and evolution by targeting the study of the hot Jupiter population of young stars. This mission can solve the question of the mode of migration of hot Jupiters, address the problem of whether Jupiters form by hot-start (gravitational instability) or cold-start (core accretion) mechanisms, and provide a wealth of data on the early stages of planetary system evolution during the active phases of stars which impact planetary habitability. In one year of observations of three weeks dwell time per field, Kepler would increase by more than an order of magnitude the number of known hot Jupiters, which can be followed up with fast cadence observations to to search for transit timing variations and to perform asteroseismological characterization of the host stars. This mission scenario continues to operate Kepler in the photometric monitoring mode for which it was designed, and is generally flexible with regards to field selection enabling prioritization of fuel usage and attitude control constraints.
To date, 17 circumbinary planets have been discovered. In this paper, we focus our attention on the stability of the Kepler circumbinary planetary systems with only one planet, i.e. Kepler-16, Kepler-34, Kepler-35, Kepler-38, Kepler-64 and Kepler-413
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of b
Planetary systems are born in the disks of gas, dust and rocky fragments that surround newly formed stars. Solid content assembles into ever-larger rocky fragments that eventually become planetary embryos. These then continue their growth by accretin
Exoplanets observed by the {it Kepler} telescope exhibit a bi-modal, radius distribution, which is known as the radius gap. We explore an origin of the radius gap, focusing on multi-planet systems. Our simple theoretical argument predicts that type I
Models of planet formation are built on underlying physical processes. In order to make sense of the origin of the planets we must first understand the origin of their building blocks. This review comes in two parts. The first part presents a detaile