ترغب بنشر مسار تعليمي؟ اضغط هنا

A combined IRAM and Herschel/HIFI study of cyano(di)acetylene in Orion KL: tentative detection of DC3N

99   0   0.0 ( 0 )
 نشر من قبل Gisela B. Esplugues
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of cyanoacetylene (HC3N) and cyanodiacetylene (HC5N) in Orion KL, through observations from two line surveys performed with the IRAM 30m telescope and the HIFI instrument on board the Herschel telescope. The frequency ranges covered are 80-280 GHz and 480-1906 GHz. We model the observed lines of HC3N, HC5N, their isotopologues (including DC3N), and vibrational modes, using a non-LTE radiative transfer code. To investigate the chemical origin of HC3N and DC3N in Orion KL, we use a time-dependent chemical model. We detect 40 lines of the ground state of HC3N and 68 lines of its 13C isotopologues. We also detect 297 lines of six vibrational modes of this molecule (nu_7, 2nu_7, 3nu_7, nu_6, nu_5, and nu_6+nu_7) and 35 rotational lines of the ground state of HC5N. We report the first tentative detection of DC3N in a giant molecular cloud with a DC3N/HC3N abundance ratio of 0.015. We provide column densities and isotopic and molecular abundances. We also perform a 2x2 map around Orion IRc2 and we present maps of HC3N lines and maps of lines of the HC3N vibrational modes nu_6 and nu_7. In addition, a comparison of our results for HC3N with those in other clouds allows us to derive correlations between the column density, the FWHM, the mass, and the luminosity of the clouds. The high column densities of HC3N obtained in the hot core, make this molecule an excellent tracer of hot and dense gas. In addition, the large frequency range covered reveals the need to consider a temperature and density gradient in the hot core in order to obtain better line fits. The high D/H ratio (comparable to that obtained in cold clouds) that we derive suggests a deuterium enrichment. Our chemical models indicate that the possible deuterated HC3N present in Orion KL is formed during the gas-phase. This fact provides new hints concerning the processes leading to deuteration.



قيم البحث

اقرأ أيضاً

We present a comprehensive study of the deuterated molecules detected in the fullband HIFI survey of the Orion KL region. Ammonia, formaldehyde, and methanol and their singly deuterated isotopologues are each detected through numerous transitions in this survey with a wide range in optical depths and excitation conditions. In conjunction with a recent study of the abundance of HDO and H$_2$O in Orion KL, this study yields the best constraints on deuterium fractionation in an interstellar molecular cloud to date. As previous studies have found, both the Hot Core and Compact Ridge regions within Orion KL contain significant abundances of deuterated molecules, suggesting an origin in cold grain mantles. In the Hot Core, we find that ammonia is roughly a factor of 2 more fractionated than water. In the Compact Ridge, meanwhile, we find similar deuterium fractionation in water, formaldehyde, and methanol, with D/H ratios of (2---8) $times$ $10^{-3}$. The [CH$_2$DOH]/[CH$_3$OD] ratio in the Compact Ridge is found to be $1.2 pm 0.3$. The Hot Core generally has lower deuterium fractionation than the Compact Ridge, suggesting a slightly warmer origin, or a greater contribution from warm gas phase chemistry.
We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules (weeds), the HF spectrum shows a P-Cy gni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.
The CH$^+$ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigation CH$^+$ formation with the first velocity-resolved spectral mapping of the CH$^+$ $J=1-0, 2-1$ rotational transitions, three sets of CH $Lambda$-doubled triplet lines, $^{12}$C$^+$ and $^{13}$C$^+$, and CH$_3$OH 835~GHz E-symmetry Q branch transitions, obtained with Herschel/HIFI over $approx$12 arcmin$^2$ centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and $^{12}$C$^+$ optical depths. Emission from C$^+$, CH$^+$, and CH is indicated to arise in the diluted gas, outside of the explosive, dense BN/KL outflow. Our models show that UV-irradiation provides favorable conditions for steady-state production of CH$^+$ in this environment. Surprisingly, no spatial or kinematic correspondences of these species are found with H$_2$ S(1) emission tracing shocked gas in the outflow. We propose that C$^+$ is being consumed by rapid production of CO to explain the lack of C$^+$ and CH$^+$ in the outflow, and that fluorescence provides the reservoir of H$_2$ excited to higher ro-vibrational and rotational levels. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of CH$^+$ formation and excitation conditions is incomplete without including the important --- possibly dominant --- role of UV irradiation.
We present a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This surv ey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the sub-mm with high spectral resolution, and include frequencies $>$ 1 THz where the Earths atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the mm to the far-IR using the XCLASS program which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced $chi^{2}$ analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high ($>$10$^6$ cm$^{-3}$) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H$_{2}$ column densities also derived from the HIFI survey. The distribution of rotation temperatures, $T_{rm rot}$, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge $T_{rm rot}$ distributions, indicating the hot core has the most complex thermal structure.
We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH$_{3}$CN, C$_{2}$H$_{3}$CN, C$_{2}$H$_{5}$CN, and NH$_{2}$CHO systematically trace hotter gas than the oxygen bearing organics CH$_{3}$OH, C$_{2}$H$_{5}$OH, CH$_{3}$OCH$_{3}$, and CH$_{3}$OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (T$_{rm kin}$$sim$300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales $gtrsim$ 10$^{5}$ years, with several species being under predicted by less than 3$sigma$. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO$_{2}$, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا