ﻻ يوجد ملخص باللغة العربية
In this study, the temperature dependence of the spin Hall angle of palladium (Pd) was experimentally investigated by spin pumping. A Ni80Fe20/Pd bilayer thin film was prepared, and a pure spin current was dynamically injected into the Pd layer. This caused the conversion of the spin current to a charge current owing to the inverse spin Hall effect. It was found that the spin Hall angle varies as a function of temperature, whereby the value of the spin Hall angle increases to ca. 0.02 at 123 K.
We have studied the spin transport and the spin Hall effect as a function of temperature for platinum (Pt) and gold (Au) in lateral spin valve structures. First, by using the spin absorption technique, we extract the spin diffusion length of Pt and A
We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The spin Hall angle $|Theta_mathrm{SH}| approx 0.22$ is i
Spin-charge conversion via inverse spin Hall effect (ISHE) is essential for enabling various applications of spintronics. The spin Hall response usually follows a universal scaling relation with longitudinal electric resistivity and has mild temperat
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and
We demonstrate the low temperature suppression of the platinum (Pt) spin Nernst angle in bilayers consisting of the antiferromagnetic insulator hematite ($alpha$-Fe$_2$O$_3$) and Pt upon measuring the transverse spin Nernst magnetothermopower (TSNM).