ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal-state charge dynamics in doped BaFe2As2: Roles of doping and necessary ingredients for superconductivity

118   0   0.0 ( 0 )
 نشر من قبل Masamichi Nakajima
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a comparative study of the in-plane resistivity and optical spectrum of doped BaFe2As2 and investigated the doping evolution of the charge dynamics. For BaFe2As2, charge dynamics is incoherent at high temperatures. Electron (Co) and isovalent (P) doping into BaFe2As2 increase coherence of the system and transform the incoherent charge dynamics into highly coherent one. On the other hand, charge dynamics remains incoherent for hole (K) doping. It is found in common with any type of doping that superconductivity with high transition temperature emerges when the normal-state charge dynamics maintains incoherence and when the resistivity associated with the coherent channel exhibits dominant temperature-linear dependence.



قيم البحث

اقرأ أيضاً

141 - A.S. Sefat , L. Li , H.B. Cao 2015
Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-a rsenide material, whereby Neel temperature rises with small x, and then falls with additional x. Specifically, we find that Neel and structural transitions in BaFe2As2 (TN =Ts= 133 K) increase for x=0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x=0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.
We report superconductivity in single crystals of the new iron-pnictide system BaFe1.9Pt0.1As2 grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 140 K present in BaFe2As2 is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature Tc=23 K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at Tc confirm the bulk nature of the superconducting phase. All properties of the superconducting state including transition temperature Tc, the lower critical field Hc1=200 mT, upper critical field Hc2~65 T, and the slope dHc2/dT are comparable in value to the those found in other transition-metal-substituted BaFe2As2 series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an d exhibits signatures of electron-boson coupling. The data is consistent with the presence of coherent quasiparticles in LaFePO.
We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0<x<1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient is observed with both decreasing band filling and isovalent substitution (K, Rb, Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our Density-Functional Theory + Slave-Spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hunds coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d-wave). We argue that the disappearance of the electron band in the range 0.4<x<1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole- and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit.
Understanding the interplay between charge order (CO) and other phenomena (e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. Here, we use resonant x-ray scattering to measure the charge order correlations in electron-doped cuprates (La2-xCexCuO4 and Nd2-xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range, and that its doping dependent wavevector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166, but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wavevector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall these findings indicate that, while verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا