ﻻ يوجد ملخص باللغة العربية
A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications.
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to
We present a novel floating catalyst synthesis route for individual, i.e. non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ sp
We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation