ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Labeling for Entity Extraction in Cyber Security

134   0   0.0 ( 0 )
 نشر من قبل Robert Bridges
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Timely analysis of cyber-security information necessitates automated information extraction from unstructured text. While state-of-the-art extraction methods produce extremely accurate results, they require ample training data, which is generally unavailable for specialized applications, such as detecting security related entities; moreover, manual annotation of corpora is very costly and often not a viable solution. In response, we develop a very precise method to automatically label text from several data sources by leveraging related, domain-specific, structured data and provide public access to a corpus annotated with cyber-security entities. Next, we implement a Maximum Entropy Model trained with the average perceptron on a portion of our corpus ($sim$750,000 words) and achieve near perfect precision, recall, and accuracy, with training times under 17 seconds.



قيم البحث

اقرأ أيضاً

In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce a nd expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.
Public disclosure of important security information, such as knowledge of vulnerabilities or exploits, often occurs in blogs, tweets, mailing lists, and other online sources months before proper classification into structured databases. In order to f acilitate timely discovery of such knowledge, we propose a novel semi-supervised learning algorithm, PACE, for identifying and classifying relevant entities in text sources. The main contribution of this paper is an enhancement of the traditional bootstrapping method for entity extraction by employing a time-memory trade-off that simultaneously circumvents a costly corpus search while strengthening pattern nomination, which should increase accuracy. An implementation in the cyber-security domain is discussed as well as challenges to Natural Language Processing imposed by the security domain.
Withthegrowthofknowledgegraphs, entity descriptions are becoming extremely lengthy. Entity summarization task, aiming to generate diverse, comprehensive, and representative summaries for entities, has received increasing interest recently. In most pr evious methods, features are usually extracted by the handcrafted templates. Then the feature selection and multi-user preference simulation take place, depending too much on human expertise. In this paper, a novel integration method called AutoSUM is proposed for automatic feature extraction and multi-user preference simulation to overcome the drawbacks of previous methods. There are two modules in AutoSUM: extractor and simulator. The extractor module operates automatic feature extraction based on a BiLSTM with a combined input representation including word embeddings and graph embeddings. Meanwhile, the simulator module automates multi-user preference simulation based on a well-designed two-phase attention mechanism (i.e., entity-phase attention and user-phase attention). Experimental results demonstrate that AutoSUM produces state-of-the-art performance on two widely used datasets (i.e., DBpedia and LinkedMDB) in both F-measure and MAP.
86 - Elizabeth Bondi 2017
Beyond traditional security methods, unmanned aerial vehicles (UAVs) have become an important surveillance tool used in security domains to collect the required annotated data. However, collecting annotated data from videos taken by UAVs efficiently, and using these data to build datasets that can be used for learning payoffs or adversary behaviors in game-theoretic approaches and security applications, is an under-explored research question. This paper presents VIOLA, a novel labeling application that includes (i) a workload distribution framework to efficiently gather human labels from videos in a secured manner; (ii) a software interface with features designed for labeling videos taken by UAVs in the domain of wildlife security. We also present the evolution of VIOLA and analyze how the changes made in the development process relate to the efficiency of labeling, including when seemingly obvious improvements did not lead to increased efficiency. VIOLA enables collecting massive amounts of data with detailed information from challenging security videos such as those collected aboard UAVs for wildlife security. VIOLA will lead to the development of new approaches that integrate deep learning for real-time detection and response.
Dealing with previously unseen slots is a challenging problem in a real-world multi-domain dialogue state tracking task. Other approaches rely on predefined mappings to generate candidate slot keys, as well as their associated values. This, however, may fail when the key, the value, or both, are not seen during training. To address this problem we introduce a neural network that leverages external knowledge bases (KBs) to better classify out-of-vocabulary slot keys and values. This network projects the slot into an attribute space derived from the KB, and, by leveraging similarities in this space, we propose candidate slot keys and values to the dialogue state tracker. We provide extensive experiments that demonstrate that our stratagem can improve upon a previous approach, which relies on predefined candidate mappings. In particular, we evaluate this approach by training a state-of-the-art model with candidates generated from our network, and obtained relative increases of 57.7% and 82.7% in F1 score and accuracy, respectively, for the aforementioned model, when compared to the current candidate generation strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا