ﻻ يوجد ملخص باللغة العربية
We investigate electronic band structure and transport properties in bilayer graphene superlattices of Thue-Morse sequence. It is interesting to find that the zero-$bar{k}$ gap center is sensitive to interlayer coupling $t$, and the centers of all gaps shift versus $t$ at a linear way. Extra Dirac points may emerge at $k_{y} e$0, and when the extra Dirac points are generated in pairs, the electronic conductance obeys a diffusive law, and the Fano factor tends to be 1/3 as the order of Thue-Morse sequence increases. Our results provide a flexible and effective way to control the transport properties in graphene.
We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch osci
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel
The generalized tight-binding model is developed to investigate the magneto-electronic properties in twisted bilayer graphene system. All the interlayer and intralayer atomic interactions are included in the Moire superlattice. The twisted bilayer gr
Prompted by recent reports on $sqrt{3} times sqrt{3}$ graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogen-doped graphene and carbo
We show that, with the exception of the words $a^2ba^2$ and $b^2ab^2$, all (finite or infinite) binary patterns in the Prouhet-Thue-Morse sequence can actually be found in that sequence as segments (up to exchange of letters in the infinite case). Th