ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

101   0   0.0 ( 0 )
 نشر من قبل Woosuk Bang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and 3He(d, p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.



قيم البحث

اقرأ أيضاً

118 - W. Bang , M. Barbui , A. Bonasera 2013
Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D2 or CD4 clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures determined by these two methods agree well, which indicates that: i) The ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; ii) The kinetic energy of deuterium ions, especially the hottest part responsible for nuclear fusion, is well described by a near-Maxwellian distribution.
166 - C. Labaune 2013
The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. R elaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
149 - A. Zhidkov , N. Pathak , J. Koga 2019
Effects of ionization injection in low and high Z gas mixtures for the laser wake field acceleration of electrons are analyzed with the use of balance equations and particle-in-cell simulations via test probe particle trajectories in realistic plasma fields and direct simulations of charge loading during the ionization process. It is shown that electrons appearing at the maximum of laser pulse field after optical ionization are trapped in the first bucket of the laser pulse wake. Electrons, which are produced by optical field ionization at the front of laser pulse, propagate backwards; some of them are trapped in the second bucket, third bucket and so on. The efficiency of ionization injection is not high, several pC/mm/bucket. This injection becomes competitive with wave breaking injection at lower plasma density and over a rather narrow range of laser pulse intensity.
146 - S. Kar , K. Markey , P.T. Simpson 2007
The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the ta rget (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
The Kohn variational principle and the hyperspherical harmonic technique are applied to study p-3He elastic scattering at low energies. Preliminary results obtained using several interaction models are reported. The calculations are compared to a rec ent phase shift analysis performed at the Triangle University Nuclear Laboratory and to the available experimental data. Using a three-nucleon interaction derived from chiral perturbation theory at N2LO, we have found a noticeable reduction of the discrepancy observed for the A_y observable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا