ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct test of the AdS/CFT correspondence by Monte Carlo studies of N=4 super Yang-Mills theory

173   0   0.0 ( 0 )
 نشر من قبل Sang-Woo Kim
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform nonperturbative studies of N=4 super Yang-Mills theory by Monte Carlo simulation. In particular, we calculate the correlation functions of chiral primary operators to test the AdS/CFT correspondence. Our results agree with the predictions obtained from the AdS side that the SUSY non-renormalization property is obeyed by the three-point functions but emph{not} by the four-point functions investigated in this paper. Instead of the lattice regularization, we use a novel regularization of the theory based on an equivalence in the large-N limit between the N=4 SU(N) theory on RxS^3 and a one-dimensional SU(N) gauge theory known as the plane-wave (BMN) matrix model. The equivalence extends the idea of large-N reduction to a curved space and, at the same time, overcomes the obstacle related to the center symmetry breaking. The adopted regularization preserves 16 SUSY, which is crucial in testing the AdS/CFT correspondence with the available computer resources. The only SUSY breaking effects, which come from the momentum cutoff $Lambda$ in R direction, are made negligible by using sufficiently large $Lambda$.



قيم البحث

اقرأ أيضاً

128 - H. Dorn , V.D. Pershin 1999
We derive a generalised concavity condition for potentials between static sources obtained from Wilson loops coupling both to gauge bosons and a set of scalar fields. It involves the second derivatives with respect to the distance in ordinary space a s well as with respect to the relative orientation in internal space. In addition we discuss the use of this field theoretical condition as a nontrivial consistency check of the AdS/CFT duality.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.
We calculate one-loop scattering amplitudes in N=4 super Yang-Mills theory away from the origin of the moduli space and demonstrate that the results are extremely simple, in much the same way as in the conformally invariant theory. Specifically, we c onsider the model where an SU(2) gauge group is spontaneously broken down to U(1). The complete component Lagrange density of the model is given in a form useful for perturbative calculations. We argue that the scattering amplitudes with massive external states deserve further study. Finally, our work shows that loop corrections can be readily computed in a mass-regulated N=4 theory, which may be relevant in trying to connect weak-coupling results with those at strong coupling, as discussed recently by Alday and Maldacena.
We test the recent claim that supersymmetric matrix quantum mechanics with mass deformation preserving maximal supersymmetry can be used to study N=4 super Yang-Mills theory on RxS^3 in the planar limit. When the mass parameter is large, we can integ rate out all the massive fluctuations around a particular classical solution, which corresponds to RxS^3. The resulting effective theory for the gauge field moduli at finite temperature is studied both analytically and numerically, and shown to reproduce the deconfinement phase transition in N=4 super Yang-Mills theory on RxS^3 at weak coupling. This transition was speculated to be a continuation of the conjectured phase transition at strong coupling, which corresponds to the Hawking-Page transition based on the gauge-gravity duality. By choosing a different classical solution of the same model, one can also reproduce results for gauge theories on other space-time such as RxS^3/Z_q and RxS^2. All these theories can be studied at strong coupling by the new simulation method, which was used successfully for supersymmetric matrix quantum mechanics without mass deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا