ﻻ يوجد ملخص باللغة العربية
We develop a simple method for constructing polynomial invariants of degree 4 for even-$n$ qubits and give explicit expressions for these polynomial invariants. We demonstrate the invariance of the polynomials under stochastic local operations and classical communication and exemplify the use of the invariance in classifying entangled states. The absolute values of these polynomial invariants are entanglement monotones, thereby allowing entanglement measures to be built. Finally, we discuss the properties of these entanglement measures.
In this paper, we study SLOCC determinant invariants of order 2^{n/2} for any even n qubits which satisfy the SLOCC determinant equations. The determinant invariants can be constructed by a simple method and the set of all these determinant invariant
Incoherent scattering of photons off two remote atoms with a Lambda-level structure is used as a basic Young-type interferometer to herald long-lived entanglement of an arbitrary degree. The degree of entanglement, as measured by the concurrence, is
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ q
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes a
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient