ﻻ يوجد ملخص باللغة العربية
The semiclassical Wigner treatment of bimolecular collisions, proposed by Lee and Scully on a partly intuitive basis [J. Chem. Phys. 73, 2238 (1980)], is derived here from first principles. The derivation combines E. J. Hellers ideas [J. Chem. Phys. 62, 1544 (1975); 65, 1289 (1976); 75, 186 (1981)], the backward picture of molecular collisions [L. Bonnet, J. Chem. Phys. 133, 174108 (2010)] and the microreversibility principle.
The emph{semiclassical Wigner treatment} of Brown and Heller [J. Chem. Phys. 75, 186 (1981)] is applied to triatomic direct photodissociations with the aim of accurately predicting final state distributions at relatively low computational cost, and h
Whereas collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum state-resolved bimolecular cross sections lags b
Whereas atom-molecule collisions have been studied with complete quantum state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cros
We investigated the electronic and structural properties of the infinite linear carbon chain (carbyne) using density functional theory (DFT) and the random phase approximation (RPA) to the correlation energy. The studies are performed in vacuo and fo
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions