ترغب بنشر مسار تعليمي؟ اضغط هنا

Main restrictions in the synthesis of new superheavy elements: quasifission or/and fusion-fission

109   0   0.0 ( 0 )
 نشر من قبل Avazbek Nasirov
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Avazbek Nasirov




اسأل ChatGPT حول البحث

The synthesis of superheavy elements stimulates the effort to study the peculiarities of the complete fusion with massive nuclei and to improve theoretical models in order to extract knowledge about reaction mechanism in heavy ion collisions at low energies. We compare the theoretical results of the compound nucleus (CN) formation and evaporation residue (ER) cross sections obtained for the $^{48}$Ca+$^{248}$Cm and $^{58}$Fe+$^{232}$Th reactions leading to the formation of the isotopes A=296 and A=290, respectively, of the new superheavy element Lv (Z=116). The ER cross sections, which can be measured directly, are determined by the complete fusion and survival probabilities of the heated and rotating compound nucleus. That probabilities can not be measured unambiguously but the knowledge about them is important to study the formation mechanism of the observed products. For this aim, the $^{48}$Ca+$^{249}$Cf and $^{64}$Ni+$^{232}$Th reactions have been considered too. The use of the mass values of superheavy nuclei calculated in the framework of the macroscopic-microscopic model by Warsaw group leads to smaller ER cross section for all of the reactions (excluding the $^{64}$Ni+$^{232}$Th reaction) in comparison with the case of using the masses calculated by Peter Moller {it et al}.



قيم البحث

اقرأ أيضاً

Recent experiments revealed intriguing similarities in the $^{64}$Ni+$^{207}$Pb, $^{132}$Xe+$^{208}$Pb, and $^{238}$U+$^{238}$U reactions at energies around the Coulomb barrier. The experimental data indicate that for all systems substantial energy d issipation takes place, in the first stage of the reaction, although the number of transferred nucleons is small. On the other hand, in the second stage, a large number of nucleons are transferred with small friction and small consumption of time. To understand the observed behavior, various reactions were analyzed based on the microscopic time-dependent Hartree-Fock (TDHF) theory. From a systematic analysis for $^{40,48}$Ca+$^{124}$Sn, $^{40}$Ca+$^{208}$Pb, $^{40}$Ar+$^{208}$Pb, $^{58}$Ni+$^{208}$Pb, $^{64}$Ni+$^{238}$U, $^{136}$Xe+ $^{198}$Pt, and $^{238}$U+$^{238}$U reactions, we find that TDHF reproduces well the measured trends. In addition, the Balian-Veneroni variational principle is applied to head-on collisions of $^{238}$U+$^{238}$U, and the variance of the fragment masses is compared with the experimental data, showing significant improvement. The underlying reaction mechanisms and possible future studies are discussed.
223 - H. Q. Zhang 2009
The angular distributions of fission fragments for the $^{32}$S+$^{184}$W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1 and 144.4 MeV were measured. The experimental fission excitation function is obtained. The fragm ent angular anisotropy ($mathcal{A}_{rm exp}$) is found by extrapolating the each fission angular distributions. The measured fission cross sections of the $^{32}$S+$^{182,184}$W reaction are decomposed into fusion-fission, quasifission and fast fission contributions by the dinuclear system model. The total evaporation residue excitation function for the $^{32}$S+$^{184}$W reaction calculated in the framework of the advanced statistical model is in good agreement with the available experimental data up to about $E_{rm c.m.}approx 160$ MeV. The theoretical descriptions of the experimental capture excitation functions for both reactions and quantities $K_0^2$, $<ell^2>$ and $mathcal{A}_{rm exp}$ which characterize angular distributions of the fission products were performed by the same partial capture cross sections at the considered range of beam energy.
167 - A.K. Nasirov 2007
The anisotropy in the angular distribution of the fusion-fission and quasifission fragments for the $^{16}$O+$^{238}$U, $^{19}$F+$^{208}$Pb and $^{32}$S+$^{208}$Pb reactions is studied by analyzing the angular momentum distributions of the dinuclear system and compound nucleus which are formed after capture and complete fusion, respectively. The orientation angles of axial symmetry axes of colliding nuclei to the beam direction are taken into account for the calculation of the variance of the projection of the total spin onto the fission axis. It is shown that the deviation of the experimental angular anisotropy from the statistical model picture is connected with the contribution of the quasifission fragments which is dominant in the $^{32}$S+$^{208}$Pb reaction. Enhancement of anisotropy at low energies in the $^{16}$O+$^{238}$U reaction is connected with quasifission of the dinuclear system having low temperature and effective moment of inertia.
To disentangle the role of shell effects and dynamics, fission fragment mass distributions of $^{191}$Au, a nucleus in the newly identified island of mass asymmetric fission in the sub-lead region, have been measured down to excitation energy of $app rox$20 MeV above the fission barrier via two different entrance channels, viz. $^{16}$O+$^{175}$Lu and $^{37}$Cl+$^{154}$Sm reactions. Apart from having signature of the shell effects in both the cases, clear experimental evidence of quasifission has been observed in the mass distributions of the Cl induced reaction, that has also been substantiated by the theoretical calculations. This crucial evidence along with a systematic analysis of available experimental data has revealed that the dynamics in the entrance channel has significant influence on most of the reactions used earlier to explore the persistence of recently discovered mass asymmetry in $beta$-delayed fission at low energy in this mass region, ignoring which might lead to ambiguity in interpreting the heavy-ion data.
The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا