ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement generation in quantum networks of Bose-Einstein condensates

179   0   0.0 ( 0 )
 نشر من قبل Alexey Pyrkov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic particles, thus can be considered to be a macroscopic qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.



قيم البحث

اقرأ أيضاً

Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, i n terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to non-adiabaticity and measurement noise. Finally, we show that the quasi-adiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed i n a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
It is shown that the distinct oscillations of the purity of the single-particle density matrix for many-body open quantum systems with balanced gain and loss reported by Dast et al. [Phys. Rev. A 93, 033617 (2016)] can also be found in closed quantum systems of which subsystems experience a gain and loss of particles. This is demonstrated with two different lattice setups for cold atoms, viz. a ring of six lattice sites with periodic boundary conditions and a linear chain of four lattice wells. In both cases pronounced purity oscillations are found, and it is shown that they can be made experimentally accessible via the average contrast in interference experiments.
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensate s of boson atoms in two distinct hyperfine spin states. The mean-field description breaks down as the system approaches the transition from the miscible side. An effective spin description clarifies the ferromagnetic nature of the transition. We show that a difference in the scattering lengths for the bosons in the same spin state leads to an effective internal magnetic field. The conditions at which the internal magnetic field vanishes (i.e., equal values of the like-boson scattering lengths) is a special point. We show that the long range density fluctuations are suppressed near that point while the effective spin exhibits the long-range fluctuations that characterize critical points. The zero-temperature system exhibits critical opalescence with respect to long wavelength waves of impurity atoms that interact with the bosons in a spin-dependent manner.
The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary state s in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا