ﻻ يوجد ملخص باللغة العربية
We use UV measurements of interstellar CO towards nearby stars to calculate the density in the diffuse molecular clouds containing the molecules responsible for the observed absorption. Chemical models and recent calculations of the excitation rate coefficients indicate that the regions in which CO is found have hydrogen predominantly in molecular form. We carry out statistical equilibrium calculations using CO-H2 collision rates to solve for the H2 density in the observed sources without including effects of radiative trapping. We have assumed kinetic temperatures of 50 K and 100 K, finding this choice to make relatively little difference to the lowest transition. For the sources having T_ex(1-0) only, for which we could determine upper and lower density limits, we find <n(H2)> = 49 cm-3. While we can find a consistent density range for a good fraction of the sources having either two or three values of the excitation temperature, there is a suggestion that the higher-J transitions are sampling clouds or regions within diffuse molecular cloud material that have higher densities than the material sampled by the J = 1-0 transition. The assumed kinetic temperature and derived H2 density are anticorrelated when the J = 2-1 transition data, the J = 3-2 transition data, or both are included. For sources with either two or three values of the excitation temperature, we find average values of the midpoint of the density range that is consistent with all of the observations equal to 68 cm-3 for T_k = 100 K and 92 cm-3 for T_k = 50 K. The data for this set of sources imply that diffuse molecular clouds are characterized by an average thermal pressure between 4600 and 6800 Kcm-3.
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t
We study four lines of sight that probe the transition from diffuse molecular gas to molecular cloud material in Taurus. Measurements of atomic and molecular absorption are used to infer the distribution of species and the physical conditions toward
Studying the composition of dust in the interstellar medium (ISM) is crucial in understanding the cycle of dust in our galaxy. The mid-infrared spectral signature of amorphous silicates, the most abundant dust species in the ISM, is studied in differ
Using near infrared UKIDSS Galactic Plane Survey data, we make extinction measurements to individual stars along the same line of sight as molecular clouds. Using an existing 3D extinction map of the inner Galaxy, that provides line of sight specific
The processes allowing the escape of ionizing photons from galaxies into the intergalactic medium are poorly known. To understand how Lyman continuum (LyC) photons escape galaxies, we constrain the HI covering fractions and column densities using ult