ﻻ يوجد ملخص باللغة العربية
We investigate epsilon-deformed N=2 superconformal gauge theories in four dimensions, focusing on the N=2* and Nf=4 SU(2) cases. We show how the modular anomaly equation obeyed by the deformed prepotential can be efficiently used to derive its non-perturbative expression starting from the perturbative one. We also show that the modular anomaly equation implies that S-duality is implemented by means of an exact Fourier transform even for arbitrary values of the deformation parameters, and then we argue that it is possible, perturbatively in the deformation, to choose appropriate variables such that it reduces to a Legendre transform.
A solution to the infinite coupling problem for N=2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gauged flavor
We propose a modular anomaly equation for the prepotential of the N=2* super Yang-Mills theory on R^4 with gauge group U(N) in the presence of an Omega-background. We then study the behaviour of the prepotential in a large-N limit, in which N goes to
We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coef
We calculate the instanton partition function of the four-dimensional N=2* SU(N) gauge theory in the presence of a generic surface operator, using equivariant localization. By analyzing the constraints that arise from S-duality, we show that the effe
The prepotential of N=2* supersymmetric theories with unitary gauge groups in an Omega-background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on t