ﻻ يوجد ملخص باللغة العربية
We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.
LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Ka
There is a long history of radio telescopes being used to augment the radio antennas regularly used to conduct telemetry, tracking, and command of deep space spacecraft. Radio telescopes are particularly valuable during short-duration mission critica
Aims. The phase scintillation of the European Space Agencys (ESA) Venus Express (VEX) spacecraft telemetry signal was observed at X-band (lambda = 3.6 cm) with a number of radio telescopes of the European VLBI Network (EVN) in the period 2009-2013. M
Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric radio window: 10-240MHz, that