ترغب بنشر مسار تعليمي؟ اضغط هنا

k-resolved susceptibility function of 2H-TaSe2 from angle-resolved photoemission

148   0   0.0 ( 0 )
 نشر من قبل Jude Laverock
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The connection between the Fermi surface and charge-density wave (CDW) order is revisited in 2H-TaSe2. Using angle-resolved photoemission spectroscopy, ab initio band structure calculations, and an accurate tight-binding model, we develop the empirical k-resolved susceptibility function, which we use to highlight states that contribute to the susceptibility for a particular q-vector. We show that although the Fermi surface is involved in the peaks in the susceptibility associated with CDW order, it is not through conventional Fermi surface nesting, but rather through finite energy transitions from states located far from the Fermi level. Comparison with monolayer TaSe2 illustrates the different mechanisms that are involved in the absence of bilayer splitting.



قيم البحث

اقرأ أيضاً

We have developed the numerical software package $chinook$, designed for the simulation of photoemission matrix elements. This quantity encodes a depth of information regarding the orbital structure of the underlying wavefunctions from which photoemi ssion occurs. Extraction of this information is often nontrivial, owing to the influence of the experimental geometry and photoelectron interference, precluding straightforward solutions. The $chinook$ code has been designed to simulate and predict the ARPES intensity measured for arbitrary experimental configuration, including photon-energy, polarization and spin-projection, as well as consideration of both surface-projected slab and bulk models. This framework then facilitates an efficient interpretation of the photoemission experiment, allowing for a deeper understanding of the electronic structure in addition to the design of new experiments which leverage the matrix element effects towards the objective of selective photoemission from states of particular interest.
419 - Philip Hofmann 2020
Progress in performing angle-resolved photoemission spectroscopy (ARPES) with high spatial resolution in the order of 1~$mu$m or less (nanoARPES) has opened the possibility to map the spectral function of solids on this tiny scale and thereby obtain detailed information on the materials emph{local} electronic band structure and many-body interactions. Recently, nanoARPES has been used to study simple electronic devices, based on two-dimensional materials, with the possibility of tuning the carrier type and density by field effect-gating, and while passing a current through the device. It was demonstrated that nanoARPES can detect possible changes in the materials electronic structure in these situations and that it can map the local doping, conductance and mobility. This article reviews these first emph{in operando} ARPES results on devices, discusses the resulting new insights, as well as the perspectives for future developments of the technique.
We investigated the nonequilibrium electronic structure of 2H-NbSe$_2$ by time- and angle-resolved photoemission spectroscopy. We find that the band structure is distinctively modulated by strong photo-excitation, as indicated by the unusual increase in the photoelectron intensities around E$_F$. In order to gain insight into the observed photo-induced electronic state, we performed DFT calculations with modulated lattice structures, and found that the variation of the Se height from the Nb layer results in a significant change in the effective mass and band gap energy. We further study the momentum-dependent carrier dynamics. The results suggest that the relaxation is faster at the K-centered Fermi surface than at the $Gamma$-centered Fermi surface, which can be attributed to the stronger electron-lattice coupling at the K-centered Fermi surface. Our demonstration of band structure engineering suggests a new role for light as a tool for controlling the functionalities of solid-state materials.
A recent letter by Xue et al. (PRL v.83, 1235 (99)) reports a Fermi-Liquid (FL) angle resolved photoemission (ARPES) lineshape for quasi one-dimensional Li0.9Mo6O17, contradicting our report (PRL v.82, 2540 (99)) of a non-FL lineshape in this materia l. Xue et al. attributed the difference to the improved angle resolution. In this comment, we point out that this reasoning is flawed. Rather, we find that their data have fundamental differences from other ARPES results and also band theory.
262 - Bing Shen , Li Yu , Kai Liu 2017
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt2In7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5. Multiple Fermi surface s heets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt2In7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt2In7. A comparison of the common features of the electronic structure of CePt2In7 and CeCoIn5 indicates that CeCoIn5 shows a much stronger band renormalization effect than CePt2In7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا