ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium dynamics of the Dean-Kawasaki model: MCT and beyond

96   0   0.0 ( 0 )
 نشر من قبل Hugo Jacquin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend a previously proposed field-theoretic self-consistent perturbation approach for the equilibrium dynamics of the Dean-Kawasaki equation presented in [J. Stat. Mech. 2008 P02004]. By taking terms missing in the latter analysis into account we arrive at a set of three new equations for correlation functions of the system. These correlations involve the density and its logarithm as local observables. Our new one-loop equations, which must carefully deal with the noninteracting Brownian gas theory, are more general than the historic Mode-Coupling one in that a further and well-defined approximation leads back to the original mode-coupling equation for the density correlations alone. However, without performing any further approximation step, our set of three equations does not feature any ergodic-non ergodic transition, as opposed to the historical mode- coupling approach.



قيم البحث

اقرأ أيضاً

We study relaxation dynamics of a three dimensional elastic manifold in random potential from a uniform initial condition by numerically solving the Langevin equation.We observe growth of roughness of the system up to larger wavelengths with time.We analyze structure factor in detail and find a compact scaling ansatz describing two distinct time regimes and crossover between them. We find short time regime corresponding to length scale smaller than the Larkin length $L_c$ is well described by the Larkin model which predicts a power law growth of domain size $L(t)$. Longer time behavior exhibits the random manifold regime with slower growth of $L(t)$.
We study the low temperature out of equilibrium Monte Carlo dynamics of the disordered Ising $p$-spin Model with $p=3$ and a small number of spin variables. We focus on sequences of configurations that are stable against single spin flips obtained by instantaneous gradient descent from persistent ones. We analyze the statistics of energy gaps, energy barriers and trapping times on sub-sequences such that the overlap between consecutive configurations does not overcome a threshold. We compare our results to the predictions of various trap models finding the best agreement with the step model when the $p$-spin configurations are constrained to be uncorrelated.
We study the dynamic and metastable properties of the fully connected Ising $p$-spin model with finite number of variables. We define trapping energies, trapping times and self correlation functions and we analyse their statistical properties in comparison to the predictions of trap models.
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the me an-field regime). The system is quenched to a temperature well below the transition temperature $T_c$ and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length $xi(t)$ agrees quantitatively with the predictions of a static theory, the metastate, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent $z(T)$ defined by $xi(t) propto t^{1/z(T)}$ and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
We perform numerical simulations of a long-range spherical spin glass with two and three body interaction terms. We study the gradient descent dynamics and the inherent structures found after a quench from initial conditions, well thermalized at temp erature $T_{in}$. In large systems, the dynamics strictly agrees with the integration of the mean-field dynamical equations. In particular, we confirm the existence of an onset initial temperature, within the liquid phase, below which the energy of the inherent structures undoubtedly depends on $T_{in}$. This behavior is in contrast with that of pure models, where there is a threshold energy that attracts all the initial configurations in the liquid. Our results strengthen the analogy between mean-field spin glass models and supercooled liquids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا