ترغب بنشر مسار تعليمي؟ اضغط هنا

On the beneficial role of noise in resistive switching

308   0   0.0 ( 0 )
 نشر من قبل German Patterson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of numerical simulations, we study the causes underlying the observed behavior. We find that experimental results can be related to general characteristics of the equations governing the system dynamics.



قيم البحث

اقرأ أيضاً

We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio depen dence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.
Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro scopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects.
Metallic oxides encased within Metal-Insulator-Metal (MIM) structures can demonstrate both unipolar and bipolar switching mechanisms, rendering them the capability to exhibit a multitude of resistive states and ultimately function as memory elements. Identifying the vital physical mechanisms behind resistive switching can enable these devices to be utilized more efficiently, reliably and in the long-term. In this paper, we present a new approach for analysing resistive switching by modelling the active core of two terminal devices as 2D and 3D grid circuit breaker networks. This model is employed to demonstrate that substantial resistive switching can only be supported by the formation of continuous current percolation channels, while multi-state capacity is ascribed to the establishment and annihilation of multiple channels.
The resistive switching phenomenon in MgO-based tunnel junctions is attributed to the effect of charged defects inside the barrier. The presence of electron traps in the MgO barrier, that can be filled and emptied, locally modifies the conductance of the barrier and leads to the resistive switching effects. A double-well model for trapped electrons in MgO is introduced to theoretically describe this phenomenon. Including the statistical distribution of potential barrier heights for these traps leads to a power-law dependence of the resistance as a function of time, under a constant bias voltage. This model also predicts a power-law relation of the hysteresis as a function of the voltage sweep frequency. Experimental transport results strongly support this model and in particular confirm the expected power laws dependencies of resistance. They moreover indicate that the exponent of these power laws varies with temperature as theoretically predicted.
Thermally-activated magnetization dynamics of small nanoparticles subject to microwave (AC) external fields is studied. It is shown that, under sufficiently strong microwave excitations, chaotic magnetization dynamics may occur close to saddle-type h eteroclinic connections, and this heteroclinic chaos is responsible for the erosion of the safe basin around stable magnetization states. The erosion phenomenon is then connected to the escape problem from the energy well surrounding a stable equilibrium. It is shown that escape times follow a generalized Arrhenius law governed by temperature, microwave field amplitude, frequency and heteroclinic chaos threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا