ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal fluctuation scaling in nonstationary counting processes

261   0   0.0 ( 0 )
 نشر من قبل Shinsuke Koyama
 تاريخ النشر 2013
والبحث باللغة English
 تأليف Shinsuke Koyama




اسأل ChatGPT حول البحث

The fluctuation scaling law has universally been observed in a wide variety of phenomena. For counting processes describing the number of events occurred during time intervals, it is expressed as a power function relationship between the variance and the mean of the event count per unit time, the characteristic exponent of which is obtained theoretically in the limit of long duration of counting windows. Here I show that the scaling law effectively appears even in a short timescale in which only a few events occur. Consequently, the counting statistics of nonstationary event sequences are shown to exhibit the scaling law as well as the dynamics at temporal resolution of this timescale. I also propose a method to extract in a systematic manner the characteristic scaling exponent from nonstationary data.



قيم البحث

اقرأ أيضاً

We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based mul tifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series to those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima (WTMM) method, and show that the results are equivalent.
Fluctuation scaling has been observed universally in a wide variety of phenomena. In time series that describe sequences of events, fluctuation scaling is expressed as power function relationships between the mean and variance of either inter-event i ntervals or counting statistics, depending on measurement variables. In this article, fluctuation scaling has been formulated for a series of events in which scaling laws in the inter-event intervals and counting statistics were related. We have considered the first-passage time of an Ornstein-Uhlenbeck process and used a conductance-based neuron model with excitatory and inhibitory synaptic inputs to demonstrate the emergence of fluctuation scaling with various exponents, depending on the input regimes and the ratio between excitation and inhibition. Furthermore, we have discussed the possible implication of these results in the context of neural coding.
130 - A. Saichev , D. Sornette 2013
For any branching process, we demonstrate that the typical total number $r_{rm mp}( u tau)$ of events triggered over all generations within any sufficiently large time window $tau$ exhibits, at criticality, a super-linear dependence $r_{rm mp}( u tau ) sim ( u tau)^gamma$ (with $gamma >1$) on the total number $ u tau$ of the immigrants arriving at the Poisson rate $ u$. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power law tail with tail exponent $1 < gamma leqslant 2$, the exponent of the super-linear law for $r_{rm mp}( u tau)$ is identical to the exponent $gamma$ of the distribution of fertilities. For $gamma>2$ and for standard branching processes without power law distribution of fertilities, $r_{rm mp}( u tau) sim ( u tau)^2$. This novel scaling law replaces and tames the divergence $ u tau/(1-n)$ of the mean total number ${bar R}_t(tau)$ of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations and an heuristic derivation enlightens its underlying mechanism. We also show that ${bar R}_t(tau)$ is always linear in $ u tau$ even at criticality ($n=1$). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by $r_{rm mp}( u tau)$.
110 - Zhi Chen 2001
Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-range power-law correlations in signals. Many physical and biological signals are ``noisy, heterogeneous and exhibit different types of nonstationarities, which c an affect the correlation properties of these signals. We systematically study the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonstationary sequences formed in three ways: (i) stitching together segments of data obtained from discontinuous experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitching together the remaining parts -- a ``cutting procedure commonly used in preparing data prior to signal analysis; (ii) adding to a signal with known correlations a tunable concentration of random outliers or spikes with different amplitude, and (iii) generating a signal comprised of segments with different properties -- e.g. different standard deviations or different correlation exponents. We compare the difference between the scaling results obtained for stationary correlated signals and correlated signals with these three types of nonstationarities.
408 - Patrick J. Sutton 2009
In counting experiments, one can set an upper limit on the rate of a Poisson process based on a count of the number of events observed due to the process. In some experiments, one makes several counts of the number of events, using different instrume nts, different event detection algorithms, or observations over multiple time intervals. We demonstrate how to generalize the classical frequentist upper limit calculation to the case where multiple counts of events are made over one or more time intervals using several (not necessarily independent) procedures. We show how different choices of the rank ordering of possible outcomes in the space of counts correspond to applying different levels of significance to the various measurements. We propose an ordering that is matched to the sensitivity of the different measurement procedures and show that in typical cases it gives stronger upper limits than other choices. As an example, we show how this method can be applied to searches for gravitational-wave bursts, where multiple burst-detection algorithms analyse the same data set, and demonstrate how a single combined upper limit can be set on the gravitational-wave burst rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا